Recommender systems are increasingly successful in recommending personalized content to users. However, these systems often capitalize on popular content. There is also a continuous evolution of user interests that need to be captured, but there is no direct way to systematically explore users' interests. This also tends to affect the overall quality of the recommendation pipeline as training data is generated from the candidates presented to the user. In this paper, we present a framework for exploration in large-scale recommender systems to address these challenges. It consists of three parts, first the user-creator exploration which focuses on identifying the best creators that users are interested in, second the online exploration framework and third a feed composition mechanism that balances explore and exploit to ensure optimal prevalence of exploratory videos. Our methodology can be easily integrated into an existing large-scale recommender system with minimal modifications. We also analyze the value of exploration by defining relevant metrics around user-creator connections and understanding how this helps the overall recommendation pipeline with strong online gains in creator and ecosystem value. In contrast to the regression on user engagement metrics generally seen while exploring, our method is able to achieve significant improvements of 3.50% in strong creator connections and 0.85% increase in novel creator connections. Moreover, our work has been deployed in production on Facebook Watch, a popular video discovery and sharing platform serving billions of users.


翻译:推荐系统越来越成功地为用户推荐个性化内容。然而,这些系统经常利用流行内容。此外,用户兴趣的不断演化需要被捕捉,但是没有直接的方法来系统地探索用户的兴趣。这也影响了推荐管道的整体质量,因为训练数据是从呈现给用户的候选者生成的。在本文中,我们提出了一个大规模推荐系统探索框架来解决这些挑战。它由三部分组成:第一部分是用户-创作者探索,重点是识别用户感兴趣的最佳创作者,第二部分是在线探索框架,第三部分是组合反馈机制,平衡探索和利用,以确保探索性视频的最佳普及率。我们的方法可以轻松地集成到现有的大规模推荐系统中,只需进行最少的修改。我们还通过定义用户-创作者连接周围的相关度量来分析探索的价值,并理解这如何帮助整体推荐管道,通过创作者和生态系统价值的强大在线增益。与一般探索用户参与度指标的回归相反,我们的方法能够在强大的创作者联系和新式创作者联系中实现显著改进,分别增加了3.50%和0.85%。此外,我们的工作已在Facebook Watch上投入生产,这是一个服务于数十亿用户的流行视频发现和分享平台。

0
下载
关闭预览

相关内容

推荐系统,是指根据用户的习惯、偏好或兴趣,从不断到来的大规模信息中识别满足用户兴趣的信息的过程。推荐推荐任务中的信息往往称为物品(Item)。根据具体应用背景的不同,这些物品可以是新闻、电影、音乐、广告、商品等各种对象。推荐系统利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。随着电子商务规模的不断扩大,商品个数和种类快速增长,顾客需要花费大量的时间才能找到自己想买的商品。这种浏览大量无关的信息和产品过程无疑会使淹没在信息过载问题中的消费者不断流失。为了解决这些问题,个性化推荐系统应运而生。个性化推荐系统是建立在海量数据挖掘基础上的一种高级商务智能平台,以帮助电子商务网站为其顾客购物提供完全个性化的决策支持和信息服务。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IJCAI2022推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年5月20日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IJCAI2022推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年5月20日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员