To mitigate the impacts associated with adverse weather conditions, meteorological services issue weather warnings to the general public. These warnings rely heavily on forecasts issued by underlying prediction systems. When deciding which prediction system(s) to utilise to construct warnings, it is important to compare systems in their ability to forecast the occurrence and severity of extreme weather events. However, evaluating forecasts for extreme events is known to be a challenging task. This is exacerbated further by the fact that high-impact weather often manifests as a result of several confounding features, a realisation that has led to considerable research on so-called compound weather events. Both univariate and multivariate methods are therefore required to evaluate forecasts for high-impact weather. In this paper, we discuss weighted verification tools, which allow particular outcomes to be emphasised during forecast evaluation. We review and compare different approaches to construct weighted scoring rules, both in a univariate and multivariate setting, and we leverage existing results on weighted scores to introduce weighted probability integral transform (PIT) histograms, allowing forecast calibration to be assessed conditionally on particular outcomes having occurred. To illustrate the practical benefit afforded by these weighted verification tools, they are employed in a case study to evaluate forecasts for extreme heat events issued by the Swiss Federal Office of Meteorology and Climatology (MeteoSwiss).


翻译:为了减轻与恶劣天气条件有关的影响,气象部门向公众发出气象警告,这些警告主要依赖基础预报系统发布的预报。在决定使用哪些预报系统来建立警报时,必须比较能够预测极端天气事件的发生和严重程度的系统;然而,对极端事件的预测进行评估是一项具有挑战性的任务,而高影响天气往往由于若干混杂的特征而显现出来,从而导致对所谓的复合天气事件进行大量研究,使这种情况更加恶化。因此,需要采用单独和多种变异的方法来评价高影响天气的预报。在本文件中,我们讨论加权核查工具,以便在预测评价期间强调特定结果。我们审查并比较制定加权评分规则的不同方法,无论是在单一天气和多变情况下,我们利用加权计分的现有结果来引入加权概率整体变换(PIT)直图,从而能够对所谓的复合天气事件进行大量研究。因此,评价高影响天气预报校准的两种方法都需要用来评价高影响天气预报的预测。为了说明这些加权核查工具所提供的实际好处,在预测评价期间可以强调特定的结果。我们审查并比较不同的方法,以便用瑞士气象局的极端气象学案例研究评估。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
57+阅读 · 2022年1月5日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员