Given a query result of a big database, why-provenance can be used to calculate the necessary part of this database, consisting of so-called witnesses. If this database consists of personal data, privacy protection has to prevent the publication of these witnesses. This implies a natural conflict of interest between publishing original data (provenance) and protecting these data (privacy). In this paper, privacy goes beyond the concept of personal data protection. The paper gives an extended definition of privacy as intellectual property protection. If the provenance information is not sufficient to reconstruct a query result, additional data such as witnesses or provenance polynomials have to be published to guarantee traceability. Nevertheless, publishing this provenance information might be a problem if (significantly) more tuples than necessary can be derived from the original database. At this point, it is already possible to violate privacy policies, provided that quasi identifiers are included in this provenance information. With this poster, we point out fundamental problems and discuss first proposals for solutions.


翻译:根据一个大数据库的查询结果,为什么证明可以用来计算这个数据库的必要部分,由所谓的证人组成。如果这个数据库包括个人数据,隐私保护必须防止这些证人的公布。这意味着公布原始数据(证明)与保护这些数据(隐私)之间自然的利益冲突。在本文中,隐私超出了个人数据保护的概念。文件将隐私的定义扩大为知识产权保护。如果出处信息不足以重建查询结果,则必须公布其他数据,例如证人或出处多名类数据,以保证可追踪性。然而,如果(大大)从原始数据库中得出比必要多的图例,公布这种出处信息可能是一个问题。在这一点上,已经有可能违反隐私政策,但前提是将准识别符列入该来源信息。有了这一海报,我们指出一些基本问题,并讨论关于解决办法的初步建议。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
39+阅读 · 2020年9月6日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
1+阅读 · 2021年3月9日
Arxiv
0+阅读 · 2021年3月7日
Arxiv
0+阅读 · 2021年3月5日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员