Federated learning (FL), as a distributed machine learning approach, has drawn a great amount of attention in recent years. FL shows an inherent advantage in privacy preservation, since users' raw data are processed locally. However, it relies on a centralized server to perform model aggregation. Therefore, FL is vulnerable to server malfunctions and external attacks. In this paper, we propose a novel framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL), to enhance the security of FL. The proposed BLADE-FL has a good performance in terms of privacy preservation, tamper resistance, and effective cooperation of learning. However, it gives rise to a new problem of training deficiency, caused by lazy clients who plagiarize others' trained models and add artificial noises to conceal their cheating behaviors. To be specific, we first develop a convergence bound of the loss function with the presence of lazy clients and prove that it is convex with respect to the total number of generated blocks $K$. Then, we solve the convex problem by optimizing $K$ to minimize the loss function. Furthermore, we discover the relationship between the optimal $K$, the number of lazy clients, and the power of artificial noises used by lazy clients. We conduct extensive experiments to evaluate the performance of the proposed framework using the MNIST and Fashion-MNIST datasets. Our analytical results are shown to be consistent with the experimental results. In addition, the derived optimal $K$ achieves the minimum value of loss function, and in turn the optimal accuracy performance.


翻译:联邦学习(FL)作为一种分散式的机器学习方法,近年来引起了人们的极大关注。联邦学习(FL)由于用户的原始数据是在当地处理的,因此在保护隐私方面具有内在的优势,因为用户的原始数据是在当地处理的。但是,它依靠一个中央服务器来进行模型聚合。因此,FL很容易受到服务器故障和外部攻击的影响。在本文中,我们提出一个新的框架,将块链结合到FL(BLADE-FL)中,以加强FL(BLADE-FL)的安全。拟议的BLADE-FL在保护隐私、篡改阻力和有效合作学习方面表现良好。然而,这引起了培训不足的新问题,这是由懒惰的客户造成的,他们把别人的训练模型弄脏了,增加了人为的噪音以掩盖他们的欺骗行为。我们首先将损失功能与懒惰客户的存在结合起来,证明它与产生的FISTFK(K)块的总数有关。然后,我们通过优化的美元来解决 Convex问题,把成本降到最低值,以尽量减少结果功能。此外,我们使用最优的实验客户之间的实验性实验行为是最佳的。我们使用最优K(美元) 和最优的实验性能的成绩,我们使用最优的试验的试验的进度的试验的进度的进度。

1
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
44+阅读 · 2020年10月31日
模型优化基础,Sayak Paul,67页ppt
专知会员服务
75+阅读 · 2020年6月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年11月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Arxiv
0+阅读 · 2021年1月21日
Arxiv
0+阅读 · 2021年1月21日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
44+阅读 · 2020年10月31日
模型优化基础,Sayak Paul,67页ppt
专知会员服务
75+阅读 · 2020年6月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年11月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Top
微信扫码咨询专知VIP会员