Digital twin (DT) technology integrates heterogeneous data and models, along with semantic technologies to create multi-layered digital representation of physical systems. DTs enable monitoring, simulation, prediction, and optimization to enhance decision making and operational efficiency. A key challenge in multi-layered, model-driven DTs is aligning heterogeneous models across abstraction layers, which can lead to semantic mismatches, inconsistencies, and synchronization issues. Existing methods, relying on static mappings and manual updates, are often inflexible, error-prone, and risk compromising data integrity. To address these limitations, we present a heterogeneous model alignment approach for multi-layered, model-driven DTs. The framework incorporates a flexibility mechanism that allows metamodels to adapt and interconnect seamlessly while maintaining semantic coherence across abstraction layers. It integrates: (i) adaptive conformance mechanisms that link metamodels with evolving models and (ii) a large language model (LLM) validated alignment process that grounds metamodels in domain knowledge, ensuring structural fidelity and conceptual consistency throughout the DT lifecycle. This approach automates semantic correspondences discovery, minimizes manual mapping, and enhances scalability across diverse model types. We illustrate the approach using air quality use case and validate its performance using different test cases from Ontology Alignment Evaluation Initiative (OAEI) tracks.


翻译:数字孪生(DT)技术融合异构数据与模型,并结合语义技术构建物理系统的多层次数字化表征。数字孪生通过监测、仿真、预测与优化功能,提升决策质量与运营效率。在多层次、模型驱动的数字孪生系统中,跨抽象层对齐异构模型面临关键挑战,可能导致语义失配、不一致性与同步问题。现有方法依赖静态映射与人工更新,通常缺乏灵活性、易产生误差,且可能损害数据完整性。为突破这些局限,本文提出面向多层次模型驱动数字孪生的异构模型对齐方法。该框架引入柔性机制,使元模型能够自适应调整并实现无缝互联,同时保持跨抽象层的语义连贯性。其整合了:(i)连接元模型与演化模型的自适应一致性机制;(ii)基于大语言模型(LLM)验证的对齐流程,将元模型锚定于领域知识,确保数字孪生全生命周期内的结构保真度与概念一致性。该方法实现了语义对应关系的自动发现,最大限度减少人工映射,并提升跨多类模型的可扩展性。我们通过空气质量应用案例演示该方法,并采用本体对齐评估倡议(OAEI)测试集中的不同案例验证其性能。

0
下载
关闭预览

相关内容

DeepSeek模型综述:V1 V2 V3 R1-Zero
专知会员服务
116+阅读 · 2月11日
专知会员服务
27+阅读 · 2021年2月2日
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
从Seq2seq到Attention模型到Self Attention(一)
量化投资与机器学习
76+阅读 · 2018年10月8日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
国家自然科学基金
23+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
从Seq2seq到Attention模型到Self Attention(一)
量化投资与机器学习
76+阅读 · 2018年10月8日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
相关基金
国家自然科学基金
23+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员