We study applications of clustering (in particular the $k$-center clustering problem) in the design of efficient and practical deterministic algorithms for computing an approximate and the exact arithmetic matrix product of two 0-1 rectangular matrices $A$ and $B$ with clustered rows or columns, respectively. Let $\lambda_A$ and $\lambda_B$ denote the minimum maximum radius of a cluster in an $\ell$-center clustering of the rows of $A$ and in a $k$-center clustering of the columns of $B,$ respectively. In particular, assuming that the matrices have size $n\times n$, we obtain the following results. A simple deterministic algorithm that approximates each entry of the arithmetic matrix product of $A$ and $B$ within the additive error of at most $2\lambda_A$ in $O(n^2\ell)$ time or at most $2\lambda_B$ in $O(n^2k)$ time. A simple deterministic preprocessing of the matrices $A$ and $B$ in $O(n^2\ell)$ time or $O(n^2k)$ time such that a query asking for the exact value of an arbitrary entry of the arithmetic matrix product of $A$ and $B$ can be answered in $O(\lambda_A)$ time or $O(\lambda_B)$ time, respectively. A simple deterministic algorithm for the exact arithmetic matrix product of $A$ and $B$ running in time $O(n^2(\ell+k+\min\{\lambda_A,\lambda_B\}))$.


翻译:本文研究聚类(特别是$k$-中心聚类问题)在设计高效实用的确定性算法中的应用,用于计算两个0-1矩形矩阵$A$和$B$的近似及精确算术矩阵乘积,其中矩阵分别具有聚类的行或列。令$\lambda_A$和$\lambda_B$分别表示$A$的行在$\ell$-中心聚类中以及$B$的列在$k$-中心聚类中的最小最大聚类半径。特别地,假设矩阵尺寸为$n\times n$,我们获得以下结果:一个简单的确定性算法,可在$O(n^2\ell)$时间内以不超过$2\lambda_A$的加性误差近似$A$和$B$算术矩阵乘积的每个元素,或在$O(n^2k)$时间内以不超过$2\lambda_B$的加性误差近似;一个简单的确定性预处理算法,在$O(n^2\ell)$时间或$O(n^2k)$时间内对矩阵$A$和$B$进行预处理,使得针对$A$和$B$算术矩阵乘积任意元素的精确值查询可分别在$O(\lambda_A)$时间或$O(\lambda_B)$时间内得到回答;一个简单的确定性算法,用于计算$A$和$B$的精确算术矩阵乘积,运行时间为$O(n^2(\ell+k+\min\{\lambda_A,\lambda_B\}))$。

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年10月28日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员