A new type of quadrature is developed. The Gaussian quadrature, for a given measure, finds optimal values of a function's argument (nodes) and the corresponding weights. In contrast, the Lebesgue quadrature developed in this paper, finds optimal values of function (value--nodes) and the corresponding weights. The Gaussian quadrature groups sums by function argument; it can be viewed as a $n$--point discrete measure, producing the Riemann integral. The Lebesgue quadrature groups sums by function value; it can be viewed as a $n$--point discrete distribution, producing the Lebesgue integral. Mathematically, the problem is reduced to a generalized eigenvalue problem: Lebesgue quadrature value--nodes are the eigenvalues and the corresponding weights are the square of the averaged eigenvectors. A numerical estimation of an integral as the Lebesgue integral is especially advantageous when analyzing irregular and stochastic processes. The approach separates the outcome (value--nodes) and the probability of the outcome (weight). For this reason, it is especially well--suited for the study of non--Gaussian processes. The software implementing the theory is available from the authors.
翻译:开发了一种新的二次曲线。 高斯二次曲线, 对于给定的度量, 找到函数参数( 节点) 和相应重量的最佳值 。 相反, 本文中开发的 Lebesgue 二次曲线, 找到了函数( 数值- 节点) 和相应重量的最佳值 。 高斯二次曲线按函数参数组数; 它可以被视为一个 $- 点的离散度测量, 生成 Riemann 有机体 。 Lebesgue 二次曲线组数按函数值组数计算; 它可以被视为一个 $- 点的离散分布, 生成 Lebesgue 整体值 。 相对而言, 问题已降为一个通用的二次数值问题 。 高斯二次曲线组值组值组按函数组数组数组合, 生成 Riemann 有机体组成。 在分析非常规和分解过程时, 它可以被视为一个最有利的数字组数组数组数组数; 不同的推算法( 特别是数值- ), 这个推算法是非的推算结果( 的推算结果)。