Electronic Health Records (EHRs) are widely applied in healthcare facilities nowadays. Due to the inherent heterogeneity, unbalanced, incompleteness, and high-dimensional nature of EHRs, it is a challenging task to employ machine learning algorithms to analyse such EHRs for prediction and diagnostics within the scope of precision medicine. Dimensionality reduction is an efficient data preprocessing technique for the analysis of high dimensional data that reduces the number of features while improving the performance of the data analysis, e.g. classification. In this paper, we propose an efficient curvature-based feature selection method for supporting more precise diagnosis. The proposed method is a filter-based feature selection method, which directly utilises the Menger Curvature for ranking all the attributes in the given data set. We evaluate the performance of our method against conventional PCA and recent ones including BPCM, GSAM, WCNN, BLS II, VIBES, 2L-MJFA, RFGA, and VAF. Our method achieves state-of-the-art performance on four benchmark healthcare data sets including CCRFDS, BCCDS, BTDS, and DRDDS with impressive 24.73% and 13.93% improvements respectively on BTDS and CCRFDS, 7.97% improvement on BCCDS, and 3.63% improvement on DRDDS. Our CFS source code is publicly available at https://github.com/zhemingzuo/CFS.
翻译:健康电子记录(EHRs)目前广泛应用于卫生保健设施。由于健康电子记录(EHRs)固有的异质性、不平衡、不完善和高维性质,采用机器学习算法分析这类EHR,用于精确医学范围内的预测和诊断,这是一项具有挑战性的任务。减少多面性是一种高效的数据处理前处理技术,用于分析高维数据,减少特征数量,同时改进数据分析(例如分类)的性能。在本文中,我们建议一种高效的基于曲线的特征选择方法,以支持更精确的诊断。拟议的方法是一种基于过滤的特征选择方法,直接使用门格调曲线来对特定数据集的所有属性进行排序。我们对照常规的五氯苯和最近的数据,包括:BPCM、GSAM、WCNN、BLS II、VIBBES、2L-MJFA、RFGA、RGA和VAFF。我们的方法在四个基准保健数据集(CCRDS)、BCCDDS、BDS、BDS% 和DRDS 分别在CFS、CFS、CR%和DFS、CRMS、BS、CMS、BS、BS、BS、BS、BS、BS、BS、BS、BS、BS、BSDFS、BS、BS、BSDS、7.93和S、B、CM、CM、B、B、C%的改进了4、B、B、C、CM、C的改进。