In recent years with the advent of high bandwidth internet access availability, the cloud computing applications have boomed. With more and more applications being run over the cloud and an increase in the overall user base of the different cloud platforms, the need for highly efficient job scheduling techniques has also increased. The task of a conventional job scheduling algorithm is to determine a sequence of execution for the jobs, which uses the least resources like time, processing, memory, etc. Generally, the user requires more services and very high efficiency. An efficient scheduling technique helps in proper utilization of the resources. In this research realm, the hybrid meta-heuristic algorithms have proven to be very effective in optimizing the task scheduling by providing better cost efficiency than when singly employed. This study presents a systematic and extensive analysis of task scheduling techniques in cloud computing using the various hybrid variants of meta-heuristic methods, like Genetic Algorithm, Tabu Search, Harmony Search, Artificial Bee Colony, Particle Swarm Optimization, etc. In this research review, a separate section discusses the use of various performance evaluation metrics throughout the literature.
翻译:近年来,随着高带宽互联网接入的到来,云计算应用程序蓬勃发展。随着云层上越来越多的应用以及不同云平台总体用户基础的增加,对高效工作时间安排技术的需求也有所增加。常规工作时间安排算法的任务是确定工作的执行顺序,使用时间、处理、记忆等最少的资源。一般而言,用户需要更多的服务和非常高的效率。高效的时间安排技术有助于资源的适当利用。在这个研究领域,混合的超重力算法证明通过提供比单人使用的更高成本效率来优化任务时间安排非常有效。这项研究对云计算中的任务时间安排技术进行了系统而广泛的分析,使用了多种混合的超重方法,如遗传Algorithm、Tabu搜索、和谐搜索、Artificial Bee Colony、Particle Swarm Optimication等。在这次研究中,一个单独的章节讨论了整个文献中各种业绩评估指标的使用情况。