Studies investigating neural information processing often implicitly ask both, which processing strategy out of several alternatives is used and how this strategy is implemented in neural dynamics. A prime example are studies on predictive coding. These often ask if confirmed predictions about inputs or predictions errors between internal predictions and inputs are passed on in a hierarchical neural system-while at the same time looking for the neural correlates of coding for errors and predictions. If we do not know exactly what a neural system predicts at any given moment, this results in a circular analysis-as has been criticized correctly. To circumvent such circular analysis, we propose to express information processing strategies (such as predictive coding) by local information-theoretic quantities, such that they can be estimated directly from neural data. We demonstrate our approach by investigating two opposing accounts of predictive coding-like processing strategies, where we quantify the building blocks of predictive coding, namely predictability of inputs and transfer of information, by local active information storage and local transfer entropy. We define testable hypotheses on the relationship of both quantities to identify which of the assumed strategies was used. We demonstrate our approach on spiking data from the retinogeniculate synapse of the cat. Applying our local information dynamics framework, we are able to show that the synapse codes for predictable rather than surprising input. To support our findings, we apply measures from partial information decomposition, which allow to differentiate if the transferred information is primarily bottom-up sensory input or information transferred conditionally on the current state of the synapse. Supporting our local information-theoretic results, we find that the synapse preferentially transfers bottom-up information.
翻译:神经信息处理研究往往隐含地询问两者, 使用几种替代品的哪些处理策略, 以及这种策略是如何在神经动态中实施的。 一个首要的例子就是预测编码。 这些例子经常问, 是否在等级神经系统中传递关于内部预测和输入之间输入或预测错误的经证实的预测, 同时寻找错误和预测编码的神经关联性。 如果我们不知道神经系统在任何特定时刻准确预测了什么, 循环分析的结果被正确批评。 为了绕过这种循环分析, 我们提议通过本地信息- 理论性数量来表达信息处理战略( 主要是预测编码), 以便直接从神经数据中估算这些输入和输入之间的错误。 我们展示了我们的方法, 通过调查预测性编码的对立账户的对立账户, 即输入的可预测性和信息传输, 通过本地活动信息存储和本地传输, 我们从设定的信息数量到设定的战略的哪个数量之间的可测试假设的编码( 主要是预测性编码的编码), 我们展示了我们的方法, 我们从假设性输入到我们所设定的当前输入的顺序中, 能够显示我们的数据转换到我们所应用的系统输入的结果。