ML models are typically trained using large datasets of high quality. However, training datasets often contain inconsistent or incomplete data. To tackle this issue, one solution is to develop algorithms that can check whether a prediction of a model is certifiably robust. Given a learning algorithm that produces a classifier and given an example at test time, a classification outcome is certifiably robust if it is predicted by every model trained across all possible worlds (repairs) of the uncertain (inconsistent) dataset. This notion of robustness falls naturally under the framework of certain answers. In this paper, we study the complexity of certifying robustness for a simple but widely deployed classification algorithm, $k$-Nearest Neighbors ($k$-NN). Our main focus is on inconsistent datasets when the integrity constraints are functional dependencies (FDs). For this setting, we establish a dichotomy in the complexity of certifying robustness w.r.t. the set of FDs: the problem either admits a polynomial time algorithm, or it is coNP-hard. Additionally, we exhibit a similar dichotomy for the counting version of the problem, where the goal is to count the number of possible worlds that predict a certain label. As a byproduct of our study, we also establish the complexity of a problem related to finding an optimal subset repair that may be of independent interest.


翻译:ML 模型通常使用质量高的大型数据集进行培训。 但是, 培训数据集通常包含不一致或不完整的数据。 要解决这一问题, 一种解决办法是开发算法, 可以检查对模型的预测是否可靠。 鉴于一种产生分类器的学习算法, 并在测试时给出一个示例, 分类结果如果由在所有可能的世界中培训过的每个模型( 修复) 预测的不确定( 不一致) 数据集的不确定性( 修复), 分类结果是可靠的。 这种稳健性概念自然属于某些答案的框架。 在本文中, 我们研究为简单但广泛部署的分类算法( $k$- Nearest Neighbors $- NNNN) 验证稳健性的复杂性。 我们的主要重点是当完整性受限是功能依赖( FDs) 时, 以不一致的方式建立不一致的数据集。 我们的分类方法的复杂性概念是: 要么承认一个多盘时间算法, 要么就是它具有 ConnP- hard 。 此外, 我们的主要重点是一个类似的直数, 我们用一种直观来算出一个我们可能由某版本的精确的精确的标签来算出一个目标。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
1+阅读 · 2022年4月18日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员