In 1998, Brassard, Hoyer, Mosca, and Tapp (BHMT) gave a quantum algorithm for approximate counting. Given a list of $N$ items, $K$ of them marked, their algorithm estimates $K$ to within relative error $\varepsilon$ by making only $O\left( \frac{1}{\varepsilon}\sqrt{\frac{N}{K}}\right) $ queries. Although this speedup is of "Grover" type, the BHMT algorithm has the curious feature of relying on the Quantum Fourier Transform (QFT), more commonly associated with Shor's algorithm. Is this necessary? This paper presents a simplified algorithm, which we prove achieves the same query complexity using Grover iterations only. We also generalize this to a QFT-free algorithm for amplitude estimation. Related approaches to approximate counting were sketched previously by Grover, Abrams and Williams, Suzuki et al., and Wie (the latter two as we were writing this paper), but in all cases without rigorous analysis.


翻译:1998年,Brassard、Hoyer、Mosca和Tapp(BHMT)给出了一种量子算法。根据一份以美元计价的项目清单,其中标注了美元,他们的算法估计美元在相对差错范围内为美元 $varepsilon$, 仅用折叠式转折法将美元估算为美元。虽然这种加速是“Grover”类型,但BHMT算法具有依赖量子Fourier变换法(QFT)这一奇特特征,后者通常与Shor的算法有关。 是否有必要? 本文提出了一个简化的算法, 我们证明它只使用折叠式转式转折法就能达到相同的查询复杂程度。 我们还将其概括为“ QFT” 缩略式算法。 与估算相近似的算法此前由 Grover、 Abrams 和 Williams、 Suzuki et al. 和 Wie (我们正在撰写的后两部), 但在所有情况下都没有经过严格的分析。

0
下载
关闭预览

相关内容

【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
74+阅读 · 2020年5月5日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
278+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
2018年边缘计算行业研究报告
行业研究报告
12+阅读 · 2019年4月15日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2020年10月30日
Arxiv
0+阅读 · 2020年10月22日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
2018年边缘计算行业研究报告
行业研究报告
12+阅读 · 2019年4月15日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员