Let $G$ be a Wheeler graph and $r$ be the number of runs in a Burrows-Wheeler Transform of $G$, and suppose $G$ can be decomposed into $\upsilon$ edge-disjoint directed paths whose internal vertices each have in- and out-degree exactly 1. We show how to store $G$ in $O (r + \upsilon)$ space such that later, given a pattern $P$, in $O (|P| \log \log |G|)$ time we can count the vertices of $G$ reachable by directed paths labelled $P$, and then report those vertices in $O (\log \log |G|)$ time per vertex.
翻译:让 G$ 成为惠勒图, $ $ 是 Burrows- Wheeler 变形时的运行量 $G$, 假设$G$可以分解成 $upsilon $ perview - discomittive 定向路径, 内部的脊椎均在度内和度外。 我们展示了如何以$O (r +\ suppilon) 空间存储 G$ ($O (r +\ suppilon) 的 美元, 以便以后, 以 $P$ ( ⁇ log\ log\ log\ ⁇ G ⁇ ) 来计算, 以 $ O (\ log\ log ⁇ G ⁇ ) 来计算, 然后将这些脊椎以 $O (\ log\ g ⁇ ) 来报告每个脊椎 。