Matrix Factorization is a widely adopted technique in the field of recommender system. Matrix Factorization techniques range from SVD, LDA, pLSA, SVD++, MatRec, Zipf Matrix Factorization and Item2Vec. In recent years, distributed word embeddings have inspired innovation in the area of recommender systems. Word2vec and GloVe have been especially emphasized in many industrial application scenario such as Xiaomi's recommender system. In this paper, we propose a new matrix factorization inspired by the theory of power law and GloVe. Instead of the exponential nature of GloVe model, we take advantage of Pareto Distribution to model our loss function. Our method is explainable in theory and easy-to-implement in practice. In the experiment section, we prove our approach is superior to vanilla matrix factorization technique and comparable with GloVe-based model in both accuracy and fairness metrics.
翻译:矩阵集成法是建议系统领域广泛采用的一种技术。矩阵集成法包括SVD、LDA、PLSA、SVD++、MatRec、Zipf矩阵集成法和项2Vec。近年来,分布式的字嵌入法激发了建议系统领域的创新。Word2vec和GloVe在许多工业应用情景中,如小米的推荐法系统,都特别强调了Word2vec和GloVe。在本文中,我们提出了一个新的矩阵集成法,受权力法理论和GloVe的启发。我们不利用GloVe模型的指数性,而是利用Pareto分布法来模拟我们的损失功能。我们的方法可以在理论中解释,在实践中易于执行。在实验部分,我们证明我们的方法优于香草矩阵集化技术,在精确度和公平度指标上与基于GloVe的模型可比。