The volume of "free" data on the internet has been key to the current success of deep learning. However, it also raises privacy concerns about the unauthorized exploitation of personal data for training commercial models. It is thus crucial to develop methods to prevent unauthorized data exploitation. This paper raises the question: \emph{can data be made unlearnable for deep learning models?} We present a type of \emph{error-minimizing} noise that can indeed make training examples unlearnable. Error-minimizing noise is intentionally generated to reduce the error of one or more of the training example(s) close to zero, which can trick the model into believing there is "nothing" to learn from these example(s). The noise is restricted to be imperceptible to human eyes, and thus does not affect normal data utility. We empirically verify the effectiveness of error-minimizing noise in both sample-wise and class-wise forms. We also demonstrate its flexibility under extensive experimental settings and practicability in a case study of face recognition. Our work establishes an important first step towards making personal data unexploitable to deep learning models.


翻译:互联网上的“ 免费” 数据量是当前深层学习成功的关键。 但是,它也引起了对未经授权利用个人数据进行商业模型培训的隐私关切。 因此,开发防止未经授权数据开发的方法至关重要。 本文提出了一个问题 : \ emph{ can data 成为深层学习模型不可忽略的数据? } 我们展示了一种类型的 \ emph{ error-minommizing} 噪音, 它确实可以使培训实例不可忽略。 故意生成错误最小化噪音, 以减少一个或一个以上接近零的培训示例的错误, 从而可以使模型相信“ 没有什么” 可以从这些示例中学习。 噪音被限制在人类眼睛上是无法察觉的, 因而不影响正常的数据效用 。 我们从经验上核查了在样本和类中最小化的噪音的有效性。 我们还在广泛的实验环境中展示了它的灵活性,并在面对面的案例研究中显示其实用性。 我们的工作确立了使个人数据无法探索模型成为深层学习模型的重要的第一步。

0
下载
关闭预览

相关内容

最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
128+阅读 · 2020年5月14日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年3月5日
Learning Recommender Systems from Multi-Behavior Data
Arxiv
7+阅读 · 2018年11月29日
VIP会员
相关VIP内容
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
128+阅读 · 2020年5月14日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员