Data fusion algorithms that employ LiDAR measurements, such as Visual-LiDAR, LiDAR-Inertial, or Multiple LiDAR Odometry and simultaneous localization and mapping (SLAM) rely on precise timestamping schemes that grant synchronicity to data from LiDAR and other sensors. Poor synchronization performance, due to incorrect timestamping procedure, may negatively affect the algorithms' state estimation results. To provide highly accurate and precise synchronization between the sensors, we introduce an open-source hardware-software LiDAR to other sensors time synchronization system that exploits a dedicated hardware LiDAR time synchronization interface by providing emulated GNSS-clock to this interface, no physical GNSS-receiver is needed. The emulator is based on a general-purpose microcontroller and, due to concise hardware and software architecture, can be easily modified or extended for synchronization of sets of different sensors such as cameras, inertial measurement units (IMUs), wheel encoders, other LiDARs, etc. In the paper, we provide an example of such a system with synchronized LiDAR and IMU sensors. We conducted an evaluation of the sensors synchronization accuracy and precision, and state 1 microsecond performance. We compared our results with timestamping provided by ROS software and by a LiDAR inner clocking scheme to underline clear advantages over these two baseline methods.
翻译:使用LiDAR测量方法(如Vision-LiDAR、LiDAR-Intertial)的聚合数据算法(LiDAR、LiDAR-Intertial),或多LiDAR时间同步界面(SLAM),依靠精确的时间标记办法,使来自LiDAR和其他传感器的数据具有同步性。由于时间标记程序不正确,同步性能差,可能对算法国家估计结果产生消极影响。为了在传感器之间提供高度准确和精确的同步,我们向其他传感器引入了一个开放源硬件硬件软件LiDAR软件LiDAR时间同步接口,通过向这个界面提供模拟的LiDAR时间同步接口,不需要物理全球导航卫星系统接收器。模拟仪基于一个通用微控制器,由于硬件和软件结构不准确性,因此可以很容易修改或扩展,以便同步不同的传感器,例如照相机、惯性测量器、轮式计时钟、其他LiDAR时钟、其他LDAR等。在纸张中,我们提供了一个这样的系统与LDAR和IMUMS系统同步同步同步的同步系统,我们用两个精确度的精确性传感器进行了两次的精确度评估。