Modern IC complexity drives test pattern growth, with the majority of patterns targeting a small set of hard-to-detect (HTD) faults. This motivates new ATPG algorithms to improve test effectiveness specifically for HTD faults. This paper presents DEFT (Differentiable Automatic Test Pattern Generation), a new ATPG approach that reformulates the discrete ATPG problem as a continuous optimization task. DEFT introduces a mathematically grounded reparameterization that aligns the expected continuous objective with discrete fault-detection semantics, enabling reliable gradient-based pattern generation. To ensure scalability and stability on deep circuit graphs, DEFT integrates a custom CUDA kernel for efficient forward-backward propagation and applies gradient normalization to mitigate vanishing gradients. Compared to a leading commercial tool on two industrial benchmarks, DEFT improves HTD fault detection by 21.1% and 48.9% on average under the same pattern budget and comparable runtime. DEFT also supports practical ATPG settings such as partial assignment pattern generation, producing patterns with 19.3% fewer 0/1 bits while still detecting 35% more faults. These results indicate DEFT is a promising and effective ATPG engine, offering a valuable complement to existing heuristic.


翻译:现代集成电路的复杂性推动了测试模式的增长,其中大部分模式针对一小部分难以检测的故障。这促使新的ATPG算法被提出,以专门提高针对难以检测故障的测试有效性。本文提出DEFT(可微自动测试模式生成),这是一种新的ATPG方法,它将离散的ATPG问题重新表述为一个连续优化任务。DEFT引入了一种基于数学的重参数化方法,使期望的连续目标与离散的故障检测语义对齐,从而实现可靠的基于梯度的模式生成。为确保在深度电路图上的可扩展性和稳定性,DEFT集成了定制的CUDA内核以实现高效的前向-反向传播,并应用梯度归一化来缓解梯度消失问题。在两个工业基准测试上与领先的商业工具相比,在相同的模式预算和可比的运行时间下,DEFT将难以检测故障的检测率平均提高了21.1%和48.9%。DEFT还支持部分赋值模式生成等实用的ATPG设置,在生成模式中0/1比特数减少19.3%的同时,仍能多检测35%的故障。这些结果表明,DEFT是一种有前景且有效的ATPG引擎,为现有的启发式方法提供了有价值的补充。

0
下载
关闭预览

相关内容

梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。
专知会员服务
15+阅读 · 2021年9月11日
【AAAI2021】“可瘦身”的生成式对抗网络
专知会员服务
13+阅读 · 2020年12月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
112+阅读 · 2019年11月25日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年12月29日
VIP会员
相关VIP内容
专知会员服务
15+阅读 · 2021年9月11日
【AAAI2021】“可瘦身”的生成式对抗网络
专知会员服务
13+阅读 · 2020年12月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
112+阅读 · 2019年11月25日
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员