Existing conversational recommendation (CR) systems usually suffer from insufficient item information when conducted on short dialogue history and unfamiliar items. Incorporating external information (e.g., reviews) is a potential solution to alleviate this problem. Given that reviews often provide a rich and detailed user experience on different interests, they are potential ideal resources for providing high-quality recommendations within an informative conversation. In this paper, we design a novel end-to-end framework, namely, Review-augmented Conversational Recommender (RevCore), where reviews are seamlessly incorporated to enrich item information and assist in generating both coherent and informative responses. In detail, we extract sentiment-consistent reviews, perform review-enriched and entity-based recommendations for item suggestions, as well as use a review-attentive encoder-decoder for response generation. Experimental results demonstrate the superiority of our approach in yielding better performance on both recommendation and conversation responding.
翻译:在现有对话建议(CR)系统进行简短对话历史和不熟悉的项目时,现有对话建议(CR)系统通常缺乏足够的项目信息。纳入外部信息(例如审查)是缓解这一问题的一个潜在解决办法。鉴于审查往往为不同利益提供丰富和详细的用户经验,因此,这些审查可能是在信息丰富的对话中提供高质量建议的理想资源。在本文件中,我们设计了一个全新的端对端框架,即审查-强化对话建议(RevCore),其中审查被无缝地纳入,以丰富项目信息,协助产生一致和内容丰富的回应。我们详细总结了观点一致的审查,对项目建议进行了富含审查和基于实体的建议,并利用审查-强化的编码破坏器进行响应生成。实验结果表明,我们的方法在改进建议和对话回应方面都具有优势。