The increasingly pervasive facial recognition (FR) systems raise serious concerns about personal privacy, especially for billions of users who have publicly shared their photos on social media. Several attempts have been made to protect individuals from being identified by unauthorized FR systems utilizing adversarial attacks to generate encrypted face images. However, existing methods suffer from poor visual quality or low attack success rates, which limit their utility. Recently, diffusion models have achieved tremendous success in image generation. In this work, we ask: can diffusion models be used to generate adversarial examples to improve both visual quality and attack performance? We propose DiffProtect, which utilizes a diffusion autoencoder to generate semantically meaningful perturbations on FR systems. Extensive experiments demonstrate that DiffProtect produces more natural-looking encrypted images than state-of-the-art methods while achieving significantly higher attack success rates, e.g., 24.5% and 25.1% absolute improvements on the CelebA-HQ and FFHQ datasets.


翻译:日益普及的面部识别(FR)系统引发了严重的个人隐私担忧,尤其是对于数十亿在社交媒体上公开分享照片的用户。已有若干尝试利用对抗攻击生成加密人脸图像,以保护个体免受未经授权的FR系统识别。然而,现有方法存在视觉质量差或攻击成功率低的问题,限制了其实用性。近年来,扩散模型在图像生成领域取得了巨大成功。在本工作中,我们提出:能否利用扩散模型生成对抗样本,以同时提升视觉质量和攻击性能?我们提出了DiffProtect,该方法利用扩散自编码器在FR系统上生成具有语义意义的扰动。大量实验表明,与现有最先进方法相比,DiffProtect生成的加密图像看起来更自然,同时实现了显著更高的攻击成功率,例如在CelebA-HQ和FFHQ数据集上分别实现了24.5%和25.1%的绝对提升。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员