There has been tremendous progress in Artificial Intelligence (AI) for music, in particular for musical composition and access to large databases for commercialisation through the Internet. We are interested in further advancing this field, focusing on composition. In contrast to current black-box AI methods, we are championing an interpretable compositional outlook on generative music systems. In particular, we are importing methods from the Distributional Compositional Categorical (DisCoCat) modelling framework for Natural Language Processing (NLP), motivated by musical grammars. Quantum computing is a nascent technology, which is very likely to impact the music industry in time to come. Thus, we are pioneering a Quantum Natural Language Processing (QNLP) approach to develop a new generation of intelligent musical systems. This work follows from previous experimental implementations of DisCoCat linguistic models on quantum hardware. In this chapter, we present Quanthoven, the first proof-of-concept ever built, which (a) demonstrates that it is possible to program a quantum computer to learn to classify music that conveys different meanings and (b) illustrates how such a capability might be leveraged to develop a system to compose meaningful pieces of music. After a discussion about our current understanding of music as a communication medium and its relationship to natural language, the chapter focuses on the techniques developed to (a) encode musical compositions as quantum circuits, and (b) design a quantum classifier. The chapter ends with demonstrations of compositions created with the system.


翻译:音乐的人工智能(AI)取得了巨大进展,特别是音乐成份和通过互联网进入大型商业化数据库。我们有兴趣进一步推进这个领域,以组成为重点。与目前的黑盒子AI方法相比,我们正在倡导对基因化音乐系统进行可解释的构成展望。特别是,我们正在从以音乐语法为动力的自然语言处理分配成份分类(DisCoCat)建模框架(NLP)中引进各种方法。Quantum 计算是一种新生技术,非常有可能在未来影响音乐行业。因此,我们正在开创一种量子自然语言处理(QNLP)方法,以开发新一代智能音乐系统。这项工作是以前试行DisCoCat关于量子硬件的语言模型(DisCoCat)的产物。我们在此章中,我们介绍了由音乐语法首次校准所建立的Quanthoven(a),这(a)表明,编程计算机可以将音乐分类成不同的含义,然后(b)将音乐的成型号的成型号,以及(b)将这种能力运用于一种对当前音乐结构进行有意义的理解,从而将这种能力的系统发展成一个有意义的结构。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
专知会员服务
80+阅读 · 2021年7月3日
【经典书】计算理论导论,482页pdf
专知会员服务
85+阅读 · 2021年4月10日
专知会员服务
77+阅读 · 2021年3月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
学术报告|港科大助理教授宋阳秋博士
科技创新与创业
7+阅读 · 2019年7月19日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2022年2月9日
Arxiv
4+阅读 · 2021年10月19日
Arxiv
10+阅读 · 2020年11月26日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
VIP会员
相关VIP内容
专知会员服务
80+阅读 · 2021年7月3日
【经典书】计算理论导论,482页pdf
专知会员服务
85+阅读 · 2021年4月10日
专知会员服务
77+阅读 · 2021年3月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
学术报告|港科大助理教授宋阳秋博士
科技创新与创业
7+阅读 · 2019年7月19日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员