The intrinsic hardware imperfection of WiFi chipsets manifests itself in the transmitted signal, leading to a unique radiometric fingerprint. This fingerprint can be used as an additional means of authentication to enhance security. In fact, recent works propose practical fingerprinting solutions that can be readily implemented in commercial-off-the-shelf devices. In this paper, we prove analytically and experimentally that these solutions are highly vulnerable to impersonation attacks. We also demonstrate that such a unique device-based signature can be abused to violate privacy by tracking the user device, and, as of today, users do not have any means to prevent such privacy attacks other than turning off the device. We propose RF-Veil, a radiometric fingerprinting solution that not only is robust against impersonation attacks but also protects user privacy by obfuscating the radiometric fingerprint of the transmitter for non-legitimate receivers. Specifically, we introduce a randomized pattern of phase errors to the transmitted signal such that only the intended receiver can extract the original fingerprint of the transmitter. In a series of experiments and analyses, we expose the vulnerability of adopting naive randomization to statistical attacks and introduce countermeasures. Finally, we show the efficacy of RF-Veil experimentally in protecting user privacy and enhancing security. More importantly, our proposed solution allows communicating with other devices, which do not employ RF-Veil.


翻译:WiFi 芯片的内在硬件缺陷在传送信号中表现为WiFi 芯片的内在硬件缺陷,导致一个独特的辐射测量指纹。这种指纹可以用作加强安全的额外认证手段。事实上,最近的工作提出了实用的指纹鉴别方法,这些方法可以在现成的商用装置中轻易实施。在本文中,我们通过分析和实验证明,这些解决办法极易被冒冒用攻击。我们还表明,这种独特的装置签字可以通过跟踪用户装置来滥用,从而侵犯隐私,而且从今天起,用户除了关闭装置之外,没有任何办法防止这种隐私攻击。我们提议使用RF-Veil,一种不仅能有力地防止冒用攻击的辐射鉴别方法,而且还能通过混淆非合法接收器发射机的辐射鉴别指纹来保护用户隐私。具体地说,我们对传送信号的阶段错误采用随机模式,只有预定的接收者才能提取发射机的原始指纹。在一系列试验和分析中,我们暴露了采用天真随机随机随机随机攻击的脆弱性,并且引入了反措施。最后,我们通过实验性地展示了我们所提议的安全性装置的效能。

0
下载
关闭预览

相关内容

Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
1+阅读 · 2021年1月17日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员