The rapid growth in distributed energy sources on power grids leads to increasingly decentralised energy management systems for the prediction of power supply and demand and the dynamic setting of an energy price signal. Within this emerging smart grid paradigm, electric vehicles can serve as consumers, transporters, and providers of energy through two-way charging stations, which highlights a critical feedback loop between the movement patterns of these vehicles and the state of the energy grid. This paper proposes a vision for an Internet of Mobile Energy (IoME), where energy and information flow seamlessly across the power and transport sectors to enhance the grid stability and end user welfare. We identify the key challenges of trust, scalability, and privacy, particularly location and energy linking privacy for EV owners, for realising the IoME vision. We propose an information architecture for IoME that uses scalable blockchain to provide energy data integrity and authenticity, and introduces one-time keys for public EV transactions and a verifiable anonymous trip extraction method for EV users to share their trip data while protecting their location privacy. We present an example scenario that details the seamless and closed loop information flow across the energy and transport sectors, along with a blockchain design and transaction vocabulary for trusted decentralised transactions. We finally discuss the open challenges presented by IoME that can unlock significant benefits to grid stability, innovation, and end user welfare.


翻译:电网中分布式能源的迅速增长导致能源管理系统日益分散,用于预测电力供应和需求,以及能源价格信号的动态设置。在这种新出现的智能电网范式中,电动车辆可以通过双向充电站充当消费者、运输者和能源供应者,这突出表明了这些车辆的移动模式与能源网状态之间的重要反馈循环。本文提出了移动能源互联网愿景,其中能源和信息在电力和运输部门之间畅通无阻地流动,以加强电网稳定性和终端用户福利。我们确定了信任、可伸缩性和隐私等关键挑战,特别是连接EV所有人隐私的位置和能源的挑战,以实现IOME愿景。我们提出了IOME信息架构,利用可扩缩式的连锁提供能源数据的完整性和真实性,为公共EV交易提供一次性钥匙,并为EV用户提供可核实的匿名旅行提取方法,以便分享其旅行数据,同时保护其位置隐私。我们提出了一个实例设想,详细介绍在能源和运输部门之间无缝和闭式循环信息流动,特别是将EVEV所有人隐私联系起来,以实现IME愿景。我们提出了一个信息保密性安全、安全安全性交易和透明性交易的最后版本,可以讨论。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
学习自然语言处理路线图
专知会员服务
137+阅读 · 2019年9月24日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年3月11日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关VIP内容
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
学习自然语言处理路线图
专知会员服务
137+阅读 · 2019年9月24日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员