Fog computing is an emerging computing paradigm which is mainly suitable for time-sensitive and real-time Internet of Things (IoT) applications. Academia and industries are focusing on the exploration of various aspects of Fog computing for market adoption. The key idea of the Fog computing paradigm is to use idle computation resources of various handheld, mobile, stationery and network devices around us, to serve the application requests in the Fog-IoT environment. The devices in the Fog environment are autonomous and not exclusively dedicated to Fog application processing. Due to that, the probability of device failure in the Fog environment is high compared with other distributed computing paradigms. Solving failure issues in Fog is crucial because successful application execution can only be ensured if failure can be handled carefully. To handle failure, there are several techniques available in the literature, such as checkpointing and task migration, each of which works well in cloud based enterprise applications that mostly deals with static or transactional data. These failure handling methods are not applicable to highly dynamic Fog environment. In contrast, this work focuses on solving the problem of managing application failure in the Fog environment by proposing a composite solution (combining fuzzy logic-based task checkpointing and task migration techniques with task replication) for failure handling and generating a robust schedule. We evaluated the proposed methods using real failure traces in terms of application execution time, delay and cost. Average delay and total processing time improved by 56% and 48% respectively, on an average for the proposed solution, compared with the existing failure handling approaches.


翻译:雾计算是一个新兴的计算模式,主要适合于时间敏感和实时的Things(IoT)应用程序的互联网(IoT)应用。 学术界和行业正在集中探索Fog计算方法的各个方面,以便市场采用。 雾计算模式的关键理念是使用我们周围各种手持设备、移动设备、文具和网络设备闲置计算资源,为Fog-IoT环境中的应用程序请求服务。 雾环境中的设备是自主的,而不是专门用于雾应用程序处理的。 因此,与其它分布式计算模式相比,雾环境中的设备故障概率高。 解决雾中的故障问题至关重要,因为只有能够谨慎处理失败才能确保成功应用的操作。 要处理失败,文献中有若干技术,例如检查和任务迁移,其中每一种技术在云基企业应用程序中运作良好,大多与静态或交易数据有关。 这些故障处理方法不适用于高度动态的烟雾应用环境。 与此形成对比,这项工作的重点是解决烟雾环境中应用程序的故障问题,通过分别提出一个复合性修正的流程,并用一个逻辑化的流程来比较一个故障处理。

0
下载
关闭预览

相关内容

必须收藏!MIT-Gilbert老爷子《矩阵图解》,一张图看透矩阵
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
35+阅读 · 2019年11月7日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
17+阅读 · 2019年3月28日
Semantics of Data Mining Services in Cloud Computing
Arxiv
4+阅读 · 2018年10月5日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员