Shadow removal is an essential task in computer vision and computer graphics. Recent shadow removal approaches all train convolutional neural networks (CNN) on real paired shadow/shadow-free or shadow/shadow-free/mask image datasets. However, obtaining a large-scale, diverse, and accurate dataset has been a big challenge, and it limits the performance of the learned models on shadow images with unseen shapes/intensities. To overcome this challenge, we present SynShadow, a novel large-scale synthetic shadow/shadow-free/matte image triplets dataset and a pipeline to synthesize it. We extend a physically-grounded shadow illumination model and synthesize a shadow image given an arbitrary combination of a shadow-free image, a matte image, and shadow attenuation parameters. Owing to the diversity, quantity, and quality of SynShadow, we demonstrate that shadow removal models trained on SynShadow perform well in removing shadows with diverse shapes and intensities on some challenging benchmarks. Furthermore, we show that merely fine-tuning from a SynShadow-pre-trained model improves existing shadow detection and removal models. Codes are publicly available at https://github.com/naoto0804/SynShadow.
翻译:清除阴影是计算机视觉和计算机图形中的一项基本任务。 近期的清除阴影方法将所有电动神经网络(CNN)都放在真实的影子/无阴影或无阴影/无阴影/无阴影/无阴影/无图像图像数据集上。 然而,获得大规模、多样和准确的数据集是一项巨大的挑战,它限制了以隐形/隐形方式在阴影图像上学习的模型的性能。 为了克服这一挑战,我们介绍了SynShadow, 这是一种新型的大型合成影/无阴影/无图像三重数据集, 并有一个合成它的管道。 我们推广了一个物理底部的影子照明模型,并结合了一个阴影图像,而一个无影子图像、相配图像和影子强化参数的任意组合。 由于SynShadow的多样性、数量和质量,我们展示了在SynShadowoww上培训的影子清除模型在消除阴影方面表现良好,其形状和强度各不相同。 此外,我们展示了仅仅对SynShadow-preduction 照明模型进行微调。