We investigate the performance of the empirical median for location estimation in heteroscedastic settings. Specifically, we consider independent symmetric real-valued random variables that share a common but unknown location parameter while having different and unknown scale parameters. Estimation under heteroscedasticity arises naturally in many practical situations and has recently attracted considerable attention. In this work, we analyze the empirical median as an estimator of the common location parameter and derive matching non-asymptotic upper and lower bounds on its estimation error. These results fully characterize the behavior of the empirical median in heteroscedastic settings, clarifying both its robustness and its intrinsic limitations and offering a precise understanding of its performance in modern settings where data quality may vary across sources.
翻译:本文研究了在异方差设定中经验中位数用于位置估计的性能。具体而言,我们考虑一组独立的对称实值随机变量,它们共享一个共同但未知的位置参数,同时具有不同且未知的尺度参数。异方差条件下的估计在许多实际情境中自然出现,并已引起广泛关注。在本工作中,我们将经验中位数作为共同位置参数的估计量进行分析,并推导出其估计误差匹配的非渐近上界与下界。这些结果完整刻画了经验中位数在异方差设定中的行为,既阐明了其鲁棒性,也揭示了其固有局限性,从而为数据质量可能随来源变化的现代场景中该估计量的性能提供了精确理解。