This paper presents a profound analysis of the robust job scheduling problem with uncertain release dates on unrelated machines. Our model involves minimizing the worst-case makespan and interval uncertainty where each release date belongs to a well-defined interval. Robust optimization requires scenario-based decision-making. A finite subset of feasible scenarios to determine the worst-case regret (a deviation from the optimal makespan) for a particular schedule is indicated. We formulate a mixed-integer nonlinear programming model to solve the underlying problem via three (constructive) greedy algorithms. Polynomial-time solvable cases are also discussed in detail. The algorithms solve the robust combinatorial problem using the makespan criterion and its non-deterministic counterpart. Computational testing compares both robust solutions and different decomposition strategies. Finally, the results confirm that a decomposition strategy applied to the makespan criterion is enough to create a competitive robust schedule.


翻译:本文深入分析了在不相关的机器上发布日期不确定的可靠工作时间安排问题。 我们的模式是将每个发布日期都属于明确界定间隔的最坏情况最小化和间隙不确定性最小化。 强力优化要求基于情景的决策。 标明了用于确定特定时间表的最坏情况遗憾( 偏离最佳模式) 的可行假设的有限子集。 我们开发了一个混合整数的非线性编程模式, 以便通过三种( 推定的)贪婪算法解决根本问题 。 也详细讨论了多式时间可解决的案例。 算法用 makespan 标准及其非非定义对应方解决强力组合问题。 比较了稳健解决方案和不同分解策略的比较。 最后,结果证实, 适用于 makepan 标准的分解战略足以形成具有竞争力的稳健的时间表 。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年6月12日
ICML 2021论文收录
专知会员服务
123+阅读 · 2021年5月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2018年11月27日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2018年11月27日
Top
微信扫码咨询专知VIP会员