Process Industry (PI e.g. Steel, Metals, Chemicals, Cement, Asphalt, Ceramics) is one of the leading sectors of the world economy, characterized however by intense environmental impact, and very high energy consumption. In spite of a traditional low innovation pace in PI, in the recent years a strong push at worldwide level towards the dual objective of improving the efficiency of plants and the quality of products, significantly reducing the consumption of electricity and CO2 emissions has taken momentum. Digital Technologies (namely Smart Embedded Systems, IoT, Data, AI and Edge-to-Cloud Technologies) are enabling drivers for a Twin Digital-Green Transition, as well as foundations for human centric, safe, comfortable and inclusive work places. Currently, digital sensors in plants produce a large amount of data which in most cases constitutes just a potential and not a real value for Process Industry, often locked-in in close proprietary systems and seldomly exploited. Digital technologies, with process modelling-simulation via digital twins, can build a bridge between the physical and the virtual worlds, bringing innovation with great efficiency and drastic reduction of waste. In accordance with the guidelines of Industrie 4.0, the H2020 funded CAPRI project aims to innovate the process industry, with a modular and scalable Reference Architecture, based on open source software, which can be implemented both in brownfield and greenfield scenarios. The ability to distribute processing between the edge, where the data is created, and the cloud, where the greatest computational resources are available, facilitates the development of integrated digital solutions with cognitive capabilities. The reference architecture is being validated in the asphalt, steel & pharma pilot plants, allowing the development of integrated planning solutions, with scheduling and control of the plants.


翻译:工序工业(如钢铁、金属、化学品、水泥、石化、石化、石化、陶瓷、陶瓷等)是世界经济的主导部门之一,但其特点是对环境产生强烈影响,能源消耗也非常高。尽管工序创新速度历来较低,但近年来全世界都在大力推动提高工厂效率和产品质量的双重目标,大幅降低电力和二氧化碳排放量。数字技术(即智能嵌入系统、IoT、数据、AI和Edge-Cloud Technology)是世界经济的主导部门之一,为双极数字-绿色过渡提供了驱动因素,但也为以人为本、安全、舒适和包容的工作场所奠定了基础。目前,工厂的数字传感器生成了大量数据,而在大多数情况下,这些数据只是一种潜力而非实际价值,往往被封闭在近地专利系统中,很少被利用。数字技术(即智能嵌入式模拟系统、IoT、Data、AI和Edge-loud-Te-Te-Tele Techno技术) 提供了双极数字-数字-数字-数字-Gecon-Gecon-Geal-Geal-G-Geal-Geal-Gender Transport 提供了双极转换过渡方案的驱动,使数字-G-Gy-Gy-Gy-real-real-reut-de-tra 以及人造能能能能能力,在以最大-cal-relevental-real-relental-real-relation-real-real-retal-real-real-real)提供了最大的技术,在可操作能力,目前,目前,在可操作性能、可操作、可操作性能和可操作-real-real-real-real-real-real-Col-real-real-real-real-cal-real-cal-cal-可操作化、可操作、可操作、可操作和可操作能力上可操作、可操作、可操作、可操作、可操作、可操作、可操作、可操作、可操作、可操作、可操作、可操作、可操作、可操作、可操作化、可操作化、可操作化、可操作化、可操作、可操作、可

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
专知会员服务
39+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
22+阅读 · 2021年12月19日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员