Patient similarity assessment, which identifies patients similar to a given patient, can help improve medical care. The assessment can be performed using Electronic Medical Records (EMRs). Patient similarity measurement requires converting heterogeneous EMRs into comparable formats to calculate their distance. While versatile document representation learning methods have been developed in recent years, it is still unclear how complex EMR data should be processed to create the most useful patient representations. This study presents a new data representation method for EMRs that takes the information in clinical narratives into account. To address the limitations of previous approaches in handling complex parts of EMR data, an unsupervised method is proposed for building a patient representation, which integrates unstructured data with structured data extracted from patients' EMRs. In order to model the extracted data, we employed a tree structure that captures the temporal relations of multiple medical events from EMR. We processed clinical notes to extract symptoms, signs, and diseases using different tools such as medspaCy, MetaMap, and scispaCy and mapped entities to the Unified Medical Language System (UMLS). After creating a tree data structure, we utilized two novel relabeling methods for the non-leaf nodes of the tree to capture two temporal aspects of the extracted events. By traversing the tree, we generated a sequence that could create an embedding vector for each patient. The comprehensive evaluation of the proposed method for patient similarity and mortality prediction tasks demonstrated that our proposed model leads to lower mean squared error (MSE), higher precision, and normalized discounted cumulative gain (NDCG) relative to baselines.


翻译:病人相似性评估可以确定与特定病人相似的病人,有助于改善医疗护理。病人相似性评估可以使用电子医疗记录(EMR)进行。病人相似性测量要求将不同种类的EMR转换成可比格式,以计算其距离。虽然近年来开发了多种文件代表学习方法。虽然近年来已经开发了多用途文件代表学习方法,但仍不清楚应如何处理复杂的EMR数据,以建立最有用的病人代表机构。本研究为EMR提供了一种新的数据代表方法,将临床叙述中的信息考虑在内。为了解决以往处理EMR复杂部分数据的方法的局限性,建议采用一种不受监督的方法来建立病人代表机构,将非结构化的数据与从病人的EMR中提取的结构化数据结合起来。为了模拟提取数据,我们采用了一种树型结构来捕捉多种医疗事件的时间关系。我们用不同的临床笔记来提取症状、迹象和疾病,例如MedpaCy、MetMap、以及cispaCy和绘图实体到统一医疗语言系统(UMLS),在创建一个更精确的病人代表机构后,建议采用一种不受监督的方法,在创建一个更精确性的数据结构后,我们用两个新的缩化的缩化的模型来进行一个不精确的模型,我们为非树级的树级的顺序的顺序的顺序的顺序的顺序的顺序式的计算方法,我们用一种不进行模拟式的计算。我们为非树级的顺序式的顺序式的顺序式的顺序,我们为不制作了一种不生成。我们所制作了一种新的树序列的顺序的顺序,我们所制作了一种不作。我们所制作了一种新的树轴法,我们制作了一种新的树序列式的方法。我们制作了一种不摄取方法。我们用的方法,我们用的方法为不摄取。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月8日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
W-net: Bridged U-net for 2D Medical Image Segmentation
Arxiv
19+阅读 · 2018年7月12日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员