Class imbalance remains a major challenge in machine learning, especially in multi-class problems with long-tailed distributions. Existing methods, such as data resampling, cost-sensitive techniques, and logistic loss modifications, though popular and often effective, lack solid theoretical foundations. As an example, we demonstrate that cost-sensitive methods are not Bayes-consistent. This paper introduces a novel theoretical framework for analyzing generalization in imbalanced classification. We propose a new class-imbalanced margin loss function for both binary and multi-class settings, prove its strong $H$-consistency, and derive corresponding learning guarantees based on empirical loss and a new notion of class-sensitive Rademacher complexity. Leveraging these theoretical results, we devise novel and general learning algorithms, IMMAX (Imbalanced Margin Maximization), which incorporate confidence margins and are applicable to various hypothesis sets. While our focus is theoretical, we also present extensive empirical results demonstrating the effectiveness of our algorithms compared to existing baselines.


翻译:类别不平衡仍然是机器学习中的一个主要挑战,尤其是在具有长尾分布的多类别问题中。现有方法,如数据重采样、成本敏感技术和逻辑损失修改,虽然流行且通常有效,但缺乏坚实的理论基础。例如,我们证明了成本敏感方法不是贝叶斯一致的。本文引入了一个新颖的理论框架,用于分析不平衡分类中的泛化性能。我们为二分类和多分类设置提出了一种新的类别不平衡边际损失函数,证明了其强 $H$-一致性,并基于经验损失和一种新的类别敏感Rademacher复杂度概念推导了相应的学习保证。利用这些理论结果,我们设计了新颖且通用的学习算法——IMMAX(不平衡边际最大化),该算法结合了置信边际并适用于各种假设集。虽然我们的重点是理论性的,但我们也提供了广泛的实证结果,证明了我们的算法相较于现有基线的有效性。

0
下载
关闭预览

相关内容

【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
【AAAI2023】MHCCL:多变量时间序列的掩蔽层次聚类对比学习
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员