Accurately quantifying motor characteristics in Parkinson disease (PD) is crucial for monitoring disease progression and optimizing treatment strategies. The finger-tapping test is a standard motor assessment. Clinicians visually evaluate a patient's tapping performance and assign an overall severity score based on tapping amplitude, speed, and irregularity. However, this subjective evaluation is prone to inter- and intra-rater variability, and does not offer insights into individual motor characteristics captured during this test. This paper introduces a granular computer vision-based method for quantifying PD motor characteristics from video recordings. Four sets of clinically relevant features are proposed to characterize hypokinesia, bradykinesia, sequence effect, and hesitation-halts. We evaluate our approach on video recordings and clinical evaluations of 74 PD patients from the Personalized Parkinson Project. Principal component analysis with varimax rotation shows that the video-based features corresponded to the four deficits. Additionally, video-based analysis has allowed us to identify further granular distinctions within sequence effect and hesitation-halts deficits. In the following, we have used these features to train machine learning classifiers to estimate the Movement Disorder Society Unified Parkinson Disease Rating Scale (MDS-UPDRS) finger-tapping score. Compared to state-of-the-art approaches, our method achieves a higher accuracy in MDS-UPDRS score prediction, while still providing an interpretable quantification of individual finger-tapping motor characteristics. In summary, the proposed framework provides a practical solution for the objective assessment of PD motor characteristics, that can potentially be applied in both clinical and remote settings. Future work is needed to assess its responsiveness to symptomatic treatment and disease progression.


翻译:暂无翻译

0
下载
关闭预览

相关内容

ACM应用感知TAP(ACM Transactions on Applied Perception)旨在通过发表有助于统一这些领域研究的高质量论文来增强计算机科学与心理学/感知之间的协同作用。该期刊发表跨学科研究,在跨计算机科学和感知心理学的任何主题领域都具有重大而持久的价值。所有论文都必须包含感知和计算机科学两个部分。主题包括但不限于:视觉感知:计算机图形学,科学/数据/信息可视化,数字成像,计算机视觉,立体和3D显示技术。听觉感知:听觉显示和界面,听觉听觉编码,空间声音,语音合成和识别。触觉:触觉渲染,触觉输入和感知。感觉运动知觉:手势输入,身体运动输入。感官感知:感官整合,多模式渲染和交互。 官网地址:http://dblp.uni-trier.de/db/journals/tap/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员