Many speech and music analysis and processing schemes rely on an estimate of the fundamental frequency $f_0$ of periodic signal components. Most established schemes apply rather unspecific signal models such as sinusoidal models to the estimation problem, which may limit time resolution and estimation accuracy. This study proposes a novel time-domain locked-loop algorithm with low computational effort and low memory footprint for $f_0$ estimation. The loop control signal is directly derived from the input time signal, using a harmonic signal model. Theoretically, this allows for a noise-robust and rapid $f_0$ estimation for periodic signals of arbitrary waveform, and without the requirement of a prior frequency analysis. Several simulations with short signals employing different types of periodicity and with added wide-band noise were performed to demonstrate and evaluate the basic properties of the proposed algorithm. Depending on the Signal-to-Noise Ratio (SNR), the estimator was found to converge within 3-4 signal repetitions, even at SNR close to or below 0dB. Furthermore, it was found to follow fundamental frequency sweeps with a delay of less than one period and to track all tones of a three-tone musical chord signal simultaneously. Quasi-periodic sounds with shifted harmonics as well as signals with stochastic periodicity were robustly tracked. Mean and standard deviation of the estimation error, i.e., the difference between true and estimated $f_0$, were at or below 1 Hz in most cases. The results suggest that the proposed algorithm may be applicable to low-delay speech and music analysis and processing.


翻译:许多言语和音乐分析及处理计划依赖于对定期信号组件基本频率的估计数,即0.0美元。大多数既定计划都对估算问题采用相当不具体的信号模型,如类流模型,这可能会限制时间分辨率和估计准确性。本研究提出了一个新的时间-域锁定环流算法,其计算努力低,记忆足迹低,估计值为0.0美元。循环控制信号直接来自输入时间信号,使用一个和谐信号模型。理论上,这允许对任意波形的定期信号进行噪音-紫色和快速的0.0美元估算,而无需事先的频率分析。进行了一些短信号模拟,使用不同周期和增加宽频度的信号,以显示和评估拟议算法的基本性质。根据信号到噪音比率(SNR),估计信号在3-4信号重复中,即使是接近或低于0dB。此外,还发现它跟踪基本频率扫荡的频率,延迟不到1个时间段或低于1度的语音波状信号,在3度和1度的轨道上显示最稳度和最稳度的信号,在1度的轨道上,在1度和最稳度的轨道上显示,在1度和最稳度之间,在1度和最稳度的轨道上的测距之间,估计是稳定的信号和最精确的频率分析。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
120+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
“CVPR 2020 接受论文列表 1470篇论文都在这了
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
(OpenCV/Keras)用手势控制的计算器
机器学习研究会
3+阅读 · 2018年3月4日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
Arxiv
0+阅读 · 2022年1月31日
Arxiv
0+阅读 · 2022年1月27日
Arxiv
0+阅读 · 2022年1月27日
Arxiv
5+阅读 · 2018年10月4日
Arxiv
3+阅读 · 2018年4月9日
VIP会员
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
“CVPR 2020 接受论文列表 1470篇论文都在这了
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
(OpenCV/Keras)用手势控制的计算器
机器学习研究会
3+阅读 · 2018年3月4日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
Top
微信扫码咨询专知VIP会员