Rigid body dynamics simulators are important tools for the design, analysis and optimization of mechanical systems in a variety of technical and scientific applications. This study examines four different simulation environments (Adams, Simscape, OpenModelica, and VEROSIM), focusing in particular on the comparison of the modeling methods, the numerical solvers, and the treatment of numerical problems that arise especially in closed-loop kinematics (esp. redundant boundary conditions and static equilibrium problem). A novel and complex crane boom of a real forestry machine serves as a practical benchmark application example. The direct comparison of the different solution approaches in the examined simulation tools supports the user in selecting the most suitable tool for his application.


翻译:刚体动力学仿真器是各类技术与科学应用中机械系统设计、分析和优化的重要工具。本研究考察了四种不同的仿真环境(Adams、Simscape、OpenModelica 和 VEROSIM),重点比较了建模方法、数值求解器以及闭环运动学中出现的数值问题处理方式(特别是冗余边界条件与静态平衡问题)。以真实林业机械中一个新颖且复杂的起重机吊臂作为实际基准应用案例。通过对所考察仿真工具中不同求解方法的直接比较,可为用户选择最适合其应用场景的工具提供支持。

0
下载
关闭预览

相关内容

144页ppt《扩散模型》,Google DeepMind Sander Dieleman
专知会员服务
48+阅读 · 2025年11月21日
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
NLG任务评价指标BLEU与ROUGE
AINLP
21+阅读 · 2020年5月25日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
Mask R-CNN 论文笔记
统计学习与视觉计算组
11+阅读 · 2018年3月22日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
NLG任务评价指标BLEU与ROUGE
AINLP
21+阅读 · 2020年5月25日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
Mask R-CNN 论文笔记
统计学习与视觉计算组
11+阅读 · 2018年3月22日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员