In this chapter we build a machine translation (MT) system tailored to the literary domain, specifically to novels, based on the state-of-the-art architecture in neural MT (NMT), the Transformer (Vaswani et al., 2017), for the translation direction English-to-Catalan. Subsequently, we assess to what extent such a system can be useful by evaluating its translations, by comparing this MT system against three other systems (two domain-specific systems under the recurrent and phrase-based paradigms and a popular generic on-line system) on three evaluations. The first evaluation is automatic and uses the most-widely used automatic evaluation metric, BLEU. The two remaining evaluations are manual and they assess, respectively, preference and amount of post-editing required to make the translation error-free. As expected, the domain-specific Transformer-based system outperformed the three other systems in all the three evaluations conducted, in all cases by a large margin.
翻译:在本章中,我们根据神经MT(NMT)和变压器(Vaswani等人,2017年)中最先进的神经结构(Vaswani等人,2017年)为英文到卡塔兰的翻译方向,专门为文学领域,特别是小说领域,建立了一个机器翻译系统(MT),随后,我们评估了这样一个系统在多大程度上有用,通过评价其翻译,将这个MT系统与其他三个系统(经常和语句模式下的两个特定域系统,以及流行通用在线系统)相比,对三种评价进行了比较。第一个评价是自动的,使用了最通用的自动评价指标BLEU,其余两个评价是手工进行的,分别评估了使翻译无误所需的优先程度和后编辑数量。正如所预期的那样,具体域的变压器系统在所有三项评价中都比其他三个系统高,所有评价都是大幅度的。