In-context learning (ICL) enables large language models (LLMs) to perform new tasks using only a few demonstrations. However, in Named Entity Recognition (NER), existing ICL methods typically rely on task-agnostic semantic similarity for demonstration retrieval, which often yields less relevant examples and leads to inferior results. We introduce DEER, a training-free ICL approach that enables LLMs to make more informed entity predictions through the use of label-grounded statistics. DEER leverages token-level statistics from training labels to identify tokens most informative for entity recognition, enabling entity-focused demonstrations. It further uses these statistics to detect and refine error-prone tokens through a targeted reflection step. Evaluated on five NER datasets across four LLMs, DEER consistently outperforms existing ICL methods and achieves performance comparable to supervised fine-tuning. Further analyses demonstrate that DEER improves example retrieval, remains effective on both seen and unseen entities, and exhibits strong robustness in low-resource settings.


翻译:上下文学习(ICL)使得大型语言模型(LLMs)仅通过少量示例即可执行新任务。然而,在命名实体识别(NER)中,现有的ICL方法通常依赖于任务无关的语义相似性进行示例检索,这往往导致检索到的示例相关性较低,从而产生较差的结果。我们提出了DEER,一种无需训练的ICL方法,通过利用标签基础统计信息,使LLMs能够做出更明智的实体预测。DEER利用训练标签中的词元级统计信息来识别对实体识别最具信息量的词元,从而实现以实体为中心的示例选择。该方法进一步利用这些统计信息,通过有针对性的反思步骤来检测并优化易出错的词元。在四个LLMs和五个NER数据集上的评估表明,DEER始终优于现有的ICL方法,并达到了与有监督微调相当的性能。进一步的分析显示,DEER改进了示例检索,对已见和未见实体均保持有效,并在低资源设置下展现出强大的鲁棒性。

0
下载
关闭预览

相关内容

命名实体识别(NER)(也称为实体标识,实体组块和实体提取)是信息抽取的子任务,旨在将非结构化文本中提到的命名实体定位和分类为预定义类别,例如人员姓名、地名、机构名、专有名词等。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2023年9月2日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员