Simultaneous localization and mapping (SLAM) plays a fundamental role in extended reality (XR) applications. As the standards for immersion in XR continue to increase, the demands for SLAM benchmarking have become more stringent. Trajectory accuracy is the key metric, and marker-based optical motion capture (MoCap) systems are widely used to generate ground truth (GT) because of their drift-free and relatively accurate measurements. However, the precision of MoCap-based GT is limited by two factors: the spatiotemporal calibration with the device under test (DUT) and the inherent jitter in the MoCap measurements. These limitations hinder accurate SLAM benchmarking, particularly for key metrics like rotation error and inter-frame jitter, which are critical for immersive XR experiences. This paper presents a novel continuous-time maximum likelihood estimator to address these challenges. The proposed method integrates auxiliary inertial measurement unit (IMU) data to compensate for MoCap jitter. Additionally, a variable time synchronization method and a pose residual based on screw congruence constraints are proposed, enabling precise spatiotemporal calibration across multiple sensors and the DUT. Experimental results demonstrate that our approach outperforms existing methods, achieving the precision necessary for comprehensive benchmarking of state-of-the-art SLAM algorithms in XR applications. Furthermore, we thoroughly validate the practicality of our method by benchmarking several leading XR devices and open-source SLAM algorithms. The code is publicly available at https://github.com/ylab-xrpg/xr-hpgt.
翻译:同步定位与建图(SLAM)在扩展现实(XR)应用中起着基础性作用。随着XR沉浸感标准的持续提升,对SLAM基准测试的要求也日益严苛。轨迹精度是核心评价指标,基于标记点的光学动作捕捉(MoCap)系统因其无漂移且相对精确的测量特性,被广泛用于生成地面真值(GT)。然而,基于MoCap的GT精度受限于两个因素:与被测设备(DUT)的时空标定,以及MoCap测量固有的抖动。这些限制阻碍了SLAM的精确基准测试,尤其对于旋转误差和帧间抖动等关键指标——这些指标对沉浸式XR体验至关重要。本文提出了一种新颖的连续时间最大似然估计器以应对这些挑战。该方法融合辅助惯性测量单元(IMU)数据以补偿MoCap抖动。此外,提出了一种可变时间同步方法以及基于螺旋同余约束的位姿残差,实现了跨多传感器与DUT的精确时空标定。实验结果表明,本方法优于现有技术,达到了对XR应用中前沿SLAM算法进行全面基准测试所需的精度。进一步地,我们通过对多款主流XR设备及开源SLAM算法进行基准测试,充分验证了本方法的实用性。代码已公开于 https://github.com/ylab-xrpg/xr-hpgt。