Synthetic aperture radar (SAR) automatic target recognition (ATR) is the key technique for remote-sensing image recognition. The state-of-the-art convolutional neural networks (CNNs) for SAR ATR suffer from \emph{high computation cost} and \emph{large memory footprint}, making them unsuitable to be deployed on resource-limited platforms, such as small/micro satellites. In this paper, we propose a comprehensive GNN-based model-architecture {co-design} on FPGA to address the above issues. \emph{Model design}: we design a novel graph neural network (GNN) for SAR ATR. The proposed GNN model incorporates GraphSAGE layer operators and attention mechanism, achieving comparable accuracy as the state-of-the-art work with near $1/100$ computation cost. Then, we propose a pruning approach including weight pruning and input pruning. While weight pruning through lasso regression reduces most parameters without accuracy drop, input pruning eliminates most input pixels with negligible accuracy drop. \emph{Architecture design}: to fully unleash the computation parallelism within the proposed model, we develop a novel unified hardware architecture that can execute various computation kernels (feature aggregation, feature transformation, graph pooling). The proposed hardware design adopts the Scatter-Gather paradigm to efficiently handle the irregular computation {patterns} of various computation kernels. We deploy the proposed design on an embedded FPGA (AMD Xilinx ZCU104) and evaluate the performance using MSTAR dataset. Compared with the state-of-the-art CNNs, the proposed GNN achieves comparable accuracy with $1/3258$ computation cost and $1/83$ model size. Compared with the state-of-the-art CPU/GPU, our FPGA accelerator achieves $14.8\times$/$2.5\times$ speedup (latency) and is $62\times$/$39\times$ more energy efficient.
翻译:合成孔径雷达(SAR) 自动目标识别(ATR) 是遥感图像识别的关键技术。 为 SAR ATR 设计最先进的进化神经网络(CNN), 包括 emph{ 高计算成本} 和\emph{ 大记忆足迹}, 使得这些网络不适合在资源有限的平台上部署, 如小型/ 微型卫星 。 在此文件中, 我们提议在 FPGA 上采用一个基于 GN 的模型- 价格( com- com- com- delete) $( 美元/ 美元/ 美元 美元) 来应对上述问题。 \ emph{ Model 设计 : 我们为 SARARAAR 设计了一个新型的进化神经神经网络( GNNNEG NER), 包括GGSAG 层操作员和关注度机制, 以近1/ 100美元的计算成本。 然后, 我们提出一个运行方法, 包括重量计算和输入 输入。 通过 lasso recional- deal mail deal mailal mail mailal mail madeal del 。