Transformer-based language models have been changing the modern Natural Language Processing (NLP) landscape for high-resource languages such as English, Chinese, Russian, etc. However, this technology does not yet exist for any Ghanaian language. In this paper, we introduce the first of such models for Twi or Akan, the most widely spoken Ghanaian language. The specific contribution of this research work is the development of several pretrained transformer language models for the Akuapem and Asante dialects of Twi, paving the way for advances in application areas such as Named Entity Recognition (NER), Neural Machine Translation (NMT), Sentiment Analysis (SA) and Part-of-Speech (POS) tagging. Specifically, we introduce four different flavours of ABENA -- A BERT model Now in Akan that is fine-tuned on a set of Akan corpora, and BAKO - BERT with Akan Knowledge only, which is trained from scratch. We open-source the model through the Hugging Face model hub and demonstrate its use via a simple sentiment classification example.
翻译:以变换器为基础的语言模型一直在改变诸如英语、中文、俄语等高资源语言的现代自然语言处理(NLP)景观。 但是,这种技术还不存在任何加纳语。 在本文中,我们为加纳语最广泛使用的语言Twi 或 Akan 引入了第一个这类模型,这是加纳语中最广泛使用的语言Twi 或 Akan 。这一研究工作的具体贡献是开发了几套为Twi Akuapem 和 Asante 方言开发的预先培训的变压器语言模型,为应用领域的进展铺平了道路,如命名实体识别(NER)、神经机器翻译(NMT)、感应分析(SA)和部分语音标记(POS)等领域的进展。 具体而言,我们引入了四种不同的ABENA-BERT 模型(ABERT Now in Akan),该模型正在对一套Akan Corora 进行微调,而BAKO-BERT只有Akan Kan Kont才从零开始培训。我们通过Hugging face 模范中心打开了该模型,并通过简单的情感分类示例展示该模型。