This paper describes an ongoing experiment evaluating the efficacy of a digital safety intervention in six high-risk, low capacity Civil Society Organisations (CSOs) in Central Asia. The evaluation takes the form of statistical analysis of DNS traffic in each organisation, obtained via security tools installed by researchers. The hypothesis is that the digital safety intervention strengthens the overall digital security posture of the CSOs, as measured by number of malware attacks intercepted by a cloud-based DNS firewall installed on the CSOs networks. The research collects DNS traffic from CSOs that are participating in the digital safety intervention, and compares a treatment group consisting of four CSOs against DNS traffic from a second group of two CSOs in which the intervention has not yet taken place. This project is ongoing, with data collection underway at a number of Central Asian CSOs. In this paper we outline the experimental design of the project, and look at the early data coming out of the DNS firewall. This is done to support the ultimate question of whether DNS data such as this can be used to accurately assess the efficacy of digital hygiene efforts.


翻译:本文介绍了目前对中亚六个高风险、低容量民间社会组织数字安全干预效果的评估实验,评价的形式是通过研究人员安装的安全工具对每个组织DNS流量进行统计分析,假设数字安全干预加强了民间社会组织的整体数字安全态势,用安装在民间社会组织网络上的基于云的DNS防火墙截获的恶意攻击次数来衡量。研究收集了参与数字安全干预的民间社会组织的DNS流量,比较了由四个民间社会组织组成的处理小组,这些处理小组对干预尚未实施的第二组两家民间社会组织的DNS流量进行了比较。这个项目正在进行中,一些中亚民间社会组织正在收集数据。我们在本文件中概述了该项目的实验设计,并研究了DNS防火墙早期出现的数据。这项工作是为了支持这样一个DNS数据能否被用来准确评估数字卫生工作的效果这一最终问题。

0
下载
关闭预览

相关内容

域名系统(英文: Domain  Name  System, DNS)是因特网的一项核心服务,它作为可以将域名和IP地址相互映射的一个分布式数据库,能够使人更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串。
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
3+阅读 · 2020年4月29日
VIP会员
相关VIP内容
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员