The problem of determining the achievable sensitivity with digitization exhibiting minimal complexity is addressed. In this case, measurements are exclusively available in hard-limited form. Assessing the achievable sensitivity via the Cram\'{e}r-Rao lower bound requires characterization of the likelihood function, which is intractable for multivariate binary distributions. In this context, the Fisher matrix of the exponential family and a lower bound for arbitrary probabilistic models are discussed. The conservative approximation for Fisher's information matrix rests on a surrogate exponential family distribution connected to the actual data-generating system by two compact equivalences. Without characterizing the likelihood and its support, this probabilistic notion enables designing estimators that consistently achieve the sensitivity as defined by the inverse of the conservative information matrix. For parameter estimation with multivariate binary samples, a quadratic exponential surrogate distribution tames statistical complexity such that a quantitative assessment of an achievable sensitivity level becomes tractable. This fact is exploited for the performance analysis concerning parameter estimation with an array of low-complexity binary sensors in comparison to an ideal system featuring infinite amplitude resolution. Additionally, data-driven assessment by estimating a conservative approximation for the Fisher matrix under recursive binary sampling as implemented in $\Sigma\Delta$-modulating analog-to-digital converters is demonstrated.


翻译:确定数字化的可实现敏感度的问题得到了解决,因为数字化显示的复杂程度极低。 在此情况下, 测量完全以硬度形式提供。 通过 Cram\ {e}r- Rao 较低约束度评估可实现的敏感度, 需要对可能性函数进行定性, 这对于多变量二进制分布十分棘手。 在这方面, 讨论了指数式家庭的Fisher 矩阵和任意概率模型的较低约束值。 Fisher 信息矩阵的保守近似值取决于通过两个紧凑等值与实际数据生成系统相连的替代指数家庭分布。 在不说明可能性及其支持的情况下, 这一概率概念使得能够设计持续实现保守信息矩阵所定义的敏感度的估算值。 对于使用多变量二进制二进制样本的参数估算, 一个可实现敏感度水平定量评估的四进制指数模型。 这一事实被用来进行参数估算,用一系列低兼容的二进制式传感器来进行参数评估, 与一个具有无限混合分辨率分辨率的理想系统相比较。 此外, 将数据S- IMFisalalal- diralimal imalalalimal imalalalalimal 进行数据驱动评估, imal- immalmalal- immalmagimal 。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
已删除
将门创投
13+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月5日
Arxiv
0+阅读 · 2021年8月4日
Arxiv
0+阅读 · 2021年8月3日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
已删除
将门创投
13+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员