Fitting concentric geometric objects to digitized data is an important problem in many areas such as iris detection, autonomous navigation, and industrial robotics operations. There are two common approaches to fitting geometric shapes to data: the geometric (iterative) approach and algebraic (non-iterative) approach. The geometric approach is a nonlinear iterative method that minimizes the sum of the squares of Euclidean distances of the observed points to the ellipses and regarded as the most accurate method, but it needs a good initial guess to improve the convergence rate. The algebraic approach is based on minimizing the algebraic distances with some constraints imposed on parametric space. Each algebraic method depends on the imposed constraint, and it can be solved with the aid of the generalized eigenvalue problem. Only a few methods in literature were developed to solve the problem of concentric ellipses. Here we study the statistical properties of existing methods by firstly establishing a general mathematical and statistical framework for this problem. Using rigorous perturbation analysis, we derive the variances and biasedness of each method under the small-sigma model. We also develop new estimators, which can be used as reliable initial guesses for other iterative methods. Then we compare the performance of each method according to their theoretical accuracy. Not only do our methods described here outperform other existing non-iterative methods, they are also quite robust against large noise. These methods and their practical performances are assessed by a series of numerical experiments on both synthetic and real data.


翻译:将等离心的几何对象与数字化数据相匹配是许多领域的一个重要问题,如岩浆检测、自主导航和工业机器人操作等,代数法是许多领域的一个重要问题。在将几何形状与数据相匹配方面,有两种共同的方法:几何(表示)法和代数(非表示)法。几何法是一种非线性迭接法,可以将所观测到的椭圆形距离方形与椭圆形距离之平方形之和最小化,并被视为最准确的方法,但需要先进行良好的初步猜测,才能提高趋同率。代数法的基础是尽可能减少代数距离,对准度空间施加一些限制。每种代数法方法都取决于强加的制约,而且可以通过通用电子价值问题来加以解决。在这里,只有几种文献方法才能解决所观察到的等离子距离的平方形距离问题。我们研究现有方法的统计特性,首先为这一问题建立一般的数学和统计框架。我们使用严格的纵深度分析,我们从每一种方法中得出不同方法的差异和偏偏差性性,我们也可以用另一种方法来推断。我们目前使用的理论性模型的计算方法,我们用来用来用来用来推断。我们用来用来判断其他的测地推测测。我们所采用的方法也是较深地方法。我们所使用的方法。我们用来用来用来推测测测的。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月24日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员