Existing fair ranking systems, especially those designed to be demographically fair, assume that accurate demographic information about individuals is available to the ranking algorithm. In practice, however, this assumption may not hold -- in real-world contexts like ranking job applicants or credit seekers, social and legal barriers may prevent algorithm operators from collecting peoples' demographic information. In these cases, algorithm operators may attempt to infer peoples' demographics and then supply these inferences as inputs to the ranking algorithm. In this study, we investigate how uncertainty and errors in demographic inference impact the fairness offered by fair ranking algorithms. Using simulations and three case studies with real datasets, we show how demographic inferences drawn from real systems can lead to unfair rankings. Our results suggest that developers should not use inferred demographic data as input to fair ranking algorithms, unless the inferences are extremely accurate.


翻译:现有的公平排名制度,特别是那些旨在在人口统计上公平的制度,假定排名算法可以获得关于个人的准确人口信息。然而,在实践中,这一假设可能无法维持 -- -- 在诸如高级求职者或信用寻求者等现实世界背景下,社会和法律障碍可能阻止算法操作者收集人民人口信息。在这些情况下,算法操作者可能试图推断人的人口统计,然后提供这些推论,作为排名算法的投入。在本研究中,我们调查人口推断中的不确定性和错误如何影响公平排序算法提供的公平性。我们利用模拟和三个案例对真实数据集的研究,显示从实际系统中得出的人口推论如何可能导致不公平的排名。我们的结果表明,开发者不应将人口数据推断作为公平的排名算法的投入,除非推断极为准确。

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
已删除
将门创投
3+阅读 · 2017年9月12日
Arxiv
0+阅读 · 2021年6月27日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2017年9月12日
Top
微信扫码咨询专知VIP会员