On the idea of mapped WENO-JS scheme, properties of mapping methods are analyzed, uncertainties in mapping development are investigated, and new rational mappings are proposed. Based on our former understandings, i.e. mapping at endpoints {0, 1} tending to identity mapping, an integrated Cm,n condition is summarized for function development. Uncertainties, i.e., whether the mapping at endpoints would make mapped scheme behave like WENO or ENO, whether piecewise implementation would entail numerical instability, and whether WENO3-JS could preserve the third-order at first-order critical points by mapping, are analyzed and clarified. A new piecewise rational mapping with sufficient regulation capability is developed afterwards, where the flatness of mapping around the linear weights and its endpoint convergence toward identity mapping can be coordinated explicitly and simultaneously. Hence, the increase of resolution and preservation of stability can be balanced. Especially, concrete mappings are determined for WENO3,5,7-JS. Numerical cases are tested for the new mapped WENO-JS, which regards numerical stability including that in long time computation, resolution and robustness. In purpose of comparison, some recent mappings such as IM by [App. Math. Comput. 232, 2014:453-468], RM by [J. Sci. Comput. 67, 2016:540-580] and AIM by [J. Comput. Phys. 381, 2019:162-188] are chosen; in addition, some recent WENO-Z type scheme are selected also. Proposed new schemes can preserve optimal orders at corresponding critical points, achieve numerical stability and indicate overall comparative advantages regarding accuracy, resolution and robustness.


翻译:在映射 WENO-JS 的构想上,对绘图方法的属性进行了分析,对绘图开发的不确定性进行了调查,并提出了新的合理绘图。根据我们以前的理解,即以身份绘图为主端点 {0,1} 进行绘图,为功能开发同时对综合 Cm,n 条件进行总结。因此,分辨率和稳定性的提高可以平衡。特别是,为WENO3、5,7-JS 确定了具体的地图绘制方法。新绘制的 WENO3-JS 是否通过绘图来保持第一级临界点的第三级的准确性,是否得到分析与澄清。此后将开发出一个具有足够监管能力的新的精度合理性绘图,即围绕线性加权的平准性及其与身份绘图的终点一致可以明确与同时加以协调。因此,分辨率的增加和稳定性的维护。特别是,WENO3,5,7-JS 的准确性执行。新绘制的WENO-JS 的数值案例可以测试,新绘制的数字稳定性,包括长期计算、分辨率的分辨率的计算、分辨率的分辨率和数学的精确度。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2020年1月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
0+阅读 · 2021年3月22日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2020年1月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员