We extend to natural deduction the approach of Linear Nested Sequents and of 2-sequents. Formulas are decorated with a spatial coordinate, which allows a formulation of formal systems in the original spirit of natural deduction -- only one introduction and one elimination rule per connective, no additional (structural) rule, no explicit reference to the accessibility relation of the intended Kripke models. We give systems for the normal modal logics from K to S4. For the intuitionistic versions of the systems, we define proof reduction, and prove proof normalization, thus obtaining a syntactical proof of consistency. For logics K and K4 we use existence predicates (following Scott) for formulating sound deduction rules.
翻译:我们扩展到自然扣减线性内嵌序列和两个序列的方法。公式用空间坐标来装饰,这样就可以以自然扣减的原始精神来拟订正式系统 -- -- 每种连接只有一种介绍和一项消除规则,没有附加(结构)规则,没有明确提及预定的Kripke模型的无障碍关系。我们从K到S4为正常模式逻辑的系统。对于系统的直觉化版本,我们定义了证据减少,并证明证据正常化,从而获得一致性的合成证据。对于逻辑K和K4,我们使用存在前提(遵循Scott)来制定健全的扣减规则。