While sparse autoencoders (SAEs) successfully extract interpretable features from language models, applying them to audio generation faces unique challenges: audio's dense nature requires compression that obscures semantic meaning, and automatic feature characterization remains limited. We propose a framework for interpreting audio generative models by mapping their latent representations to human-interpretable acoustic concepts. We train SAEs on audio autoencoder latents, then learn linear mappings from SAE features to discretized acoustic properties (pitch, amplitude, and timbre). This enables both controllable manipulation and analysis of the AI music generation process, revealing how acoustic properties emerge during synthesis. We validate our approach on continuous (DiffRhythm-VAE) and discrete (EnCodec, WavTokenizer) audio latent spaces, and analyze DiffRhythm, a state-of-the-art text-to-music model, to demonstrate how pitch, timbre, and loudness evolve throughout generation. While our work is only done on audio modality, our framework can be extended to interpretable analysis of visual latent space generation models.


翻译:尽管稀疏自编码器(SAEs)已成功从语言模型中提取可解释特征,但将其应用于音频生成面临独特挑战:音频的密集特性需要压缩处理,这会模糊语义信息,且自动特征表征仍存在局限。我们提出一个框架,通过将音频生成模型的潜在表示映射到人类可理解的声学概念来实现其可解释性。我们在音频自编码器潜在空间上训练SAEs,然后学习从SAE特征到离散化声学属性(音高、振幅和音色)的线性映射。这使得AI音乐生成过程既可进行可控操作,又可进行分析,揭示了声学属性在合成过程中如何涌现。我们在连续(DiffRhythm-VAE)和离散(EnCodec、WavTokenizer)音频潜在空间上验证了该方法,并分析了最先进的文本到音乐模型DiffRhythm,以展示音高、音色和响度在整个生成过程中的演变规律。虽然当前工作仅针对音频模态,但我们的框架可扩展至视觉潜在空间生成模型的可解释性分析。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员