We give a complete characterization of the two-state anti-ferromagnetic spin systems which are of strong spatial mixing on general graphs. We show that a two-state anti-ferromagnetic spin system is of strong spatial mixing on all graphs of maximum degree at most $\Delta$ if and only if the system has a unique Gibbs measure on infinite regular trees of degree up to $\Delta$, where $\Delta$ can be either bounded or unbounded. As a consequence, there exists an FPTAS for the partition function of a two-state anti-ferromagnetic spin system on graphs of maximum degree at most $\Delta$ when the uniqueness condition is satisfied on infinite regular trees of degree up to $\Delta$. In particular, an FPTAS exists for arbitrary graphs if the uniqueness is satisfied on all infinite regular trees. This covers as special cases all previous algorithmic results for two-state anti-ferromagnetic systems on general-structure graphs. Combining with the FPRAS for two-state ferromagnetic spin systems of Jerrum-Sinclair and Goldberg-Jerrum-Paterson, and the hardness results of Sly-Sun and independently of Galanis-Stefankovic-Vigoda, this gives a complete classification, except at the phase transition boundary, of the approximability of all two-state spin systems, on either degree-bounded families of graphs or family of all graphs.
翻译:我们完整地描述一般图表上高度空间混合的两州反磁旋系统。我们表明,如果并且只有在该系统对最高水平的无限普通树有独特的Gibbs测量值,最高水平达到$\Delta$,那么,两个州的反磁旋系统在最大水平的图表上具有很强的空间混合,如果并且只有在该系统对最高水平的无限普通树有独特的Gibs测量值,最高水平达到$\Delta$,其中$\Delta$可以被捆绑或不受约束。因此,在一般结构图表上存在所有两州反磁共振系统的分布功能。在最高水平的图表上,最高水平为$\Delta$的两州反磁共振旋转系统,最高水平为$\Delta$。特别是,如果所有无限普通树上的独特性树都满意度,那么任意图就存在FPTAS。这包括所有普通结构图上两州反磁共振的完整算结果。在两州、两州铁磁共振等级的平面的平面的两度、两度的红-直角的纸-S-Siral-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-st-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-st-st-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-st-st-st-st-st-st-st-st-st-st-st-stal-stal-stal-st-st-st-st-st-st-st-st-st-st-st-stal-stal-st-st-stal-stal-stal-stal-stal-st-st-st-stal-stal-stal-stal-stal-st-st-st-stal-st-stal-stal-stal-stal-sy-stal-sy-sy-sy