Resiliency plays a critical role in designing future communication networks. How to make edge computing systems resilient against unpredictable failures and fluctuating demand is an important and challenging problem. To this end, this paper investigates a resilient service placement and workload allocation problem for a service provider (SP) who can procure resources from numerous edge nodes to serve its users, considering both resource demand and node failure uncertainties. We introduce a novel two-stage adaptive robust model to capture this problem. The service placement and resource procurement decisions are optimized in the first stage while the workload allocation decision is determined in the second stage after the uncertainty realization. By exploiting the special structure of the uncertainty set, we develop an efficient iterative algorithm that can converge to an exact optimal solution within a finite number of iterations. We further present an affine decision rule approximation approach for solving large-scale problem instances in a reasonable time. Extensive numerical results demonstrate the advantages of the proposed model and approaches, which can help the SP make proactive decisions to mitigate the impacts of the uncertainties.
翻译:在设计未来的通信网络时,复原力发挥着关键作用。如何使边缘计算系统适应不可预测的失败和波动的需求是一个重要而具有挑战性的问题。为此,本文件调查了服务供应商(SP)在从许多边缘节点采购资源为其用户服务方面所面临的具有复原力的服务安置和工作量分配问题,同时考虑到资源需求和节点故障的不确定性。我们引入了一个新的两阶段适应性强的稳健模式来捕捉这一问题。服务安置和资源采购决定在第一阶段得到优化,而工作量分配决定则在不确定性实现后的第二阶段得到确定。通过利用不确定性的特殊结构,我们开发了高效的迭代算法,可以在有限的迭代数内汇集到一个精确的最佳解决方案。我们进一步提出了在合理时间内解决大规模问题案例的近似规则。广泛的数字结果显示了拟议模式和办法的优势,这有助于SP作出积极主动的决定,减轻不确定性的影响。