In the current era, people and society have grown increasingly reliant on artificial intelligence (AI) technologies. AI has the potential to drive us towards a future in which all of humanity flourishes. It also comes with substantial risks for oppression and calamity. Discussions about whether we should (re)trust AI have repeatedly emerged in recent years and in many quarters, including industry, academia, healthcare, services, and so on. Technologists and AI researchers have a responsibility to develop trustworthy AI systems. They have responded with great effort to design more responsible AI algorithms. However, existing technical solutions are narrow in scope and have been primarily directed towards algorithms for scoring or classification tasks, with an emphasis on fairness and unwanted bias. To build long-lasting trust between AI and human beings, we argue that the key is to think beyond algorithmic fairness and connect major aspects of AI that potentially cause AI's indifferent behavior. In this survey, we provide a systematic framework of Socially Responsible AI Algorithms that aims to examine the subjects of AI indifference and the need for socially responsible AI algorithms, define the objectives, and introduce the means by which we may achieve these objectives. We further discuss how to leverage this framework to improve societal well-being through protection, information, and prevention/mitigation.


翻译:在当今时代,人们和社会越来越依赖人工智能技术。大赦国际具有推动我们走向人类繁荣的未来的潜力,它也具有巨大的压迫和灾难风险。关于我们是否应(重新)信任AI的讨论近年来一再出现,在很多方面,包括工业、学术界、保健、服务等,也一再出现。技术学家和大赦国际研究人员有责任开发可靠的人工智能系统。他们作出了巨大的努力,设计了更负责任的人工智能算法。然而,现有的技术解决办法范围狭窄,主要针对评分或分类任务的算法,强调公平和不可取的偏见。为了在大赦国际和人类之间建立长期信任,我们主张关键在于超越算法公正,将AI的主要方面联系起来,这可能导致大赦国际的冷漠行为。在这次调查中,我们提供了一个对社会负责的人工智能算法的系统框架,目的是研究人工智能冷漠和对社会负责任的人工智能算法的需要,界定目标,并介绍我们可能实现这些目标的手段。我们进一步讨论如何利用这一框架来改进社会保护。

0
下载
关闭预览

相关内容

负责任的人工智能是需要相关组织设立人工智能使用的标准。首先,人工智能的使用应该在各方面符合道德和法规;其次,从开发到使用需要有一套健全的管理机制;第三,需要强有力的监管机制来确保其使用时的公平公正、通俗易懂、安全稳定。
专知会员服务
54+阅读 · 2020年10月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
VIP会员
相关VIP内容
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员