Cost per click is a common metric to judge digital advertising campaign performance. In this paper we discuss an approach that generates a feature targeting recommendation to optimise cost per click. We also discuss a technique to assign bid prices to features without compromising on the number of features recommended. Our approach utilises impression and click stream data sets corresponding to real time auctions that we have won. The data contains information about device type, website, RTB Exchange ID. We leverage data across all campaigns that we have access to while ensuring that recommendations are sensitive to both individual campaign level features and globally well performing features as well. We model Bid recommendation around the hypothesis that a click is a Bernoulli trial and click stream follows Binomial distribution which is then updated based on live performance ensuring week over week improvement. This approach has been live tested over 10 weeks across 5 campaigns. We see Cost per click gains of 16-60% and click through rate improvement of 42-137%. At the same time, the campaign delivery was competitive.


翻译:每个点击成本是判断数字广告运动绩效的通用衡量标准。 在本文中, 我们讨论一种方法, 产生一个针对目标的功能建议, 优化每个点击的成本。 我们还讨论一种在不损及推荐的功能数量的情况下, 将标价指定为特色的技术。 我们的方法使用与我们赢得的实时拍卖相对应的印象和点击流数据集。 数据包含设备类型、 网站、 RTB 交换身份等信息。 我们利用了所有我们能够访问到的运动中的数据, 同时确保建议既敏感于单个运动级别的特点,也敏感地关注全球业绩良好的特点。 我们围绕一个假设, 即点击是Bernoulli 的试验, 点击流是Binomial 分布的模型, 然后再根据保证周内改进的现场表现更新。 这个方法在5个运动中经过10周的现场测试。 我们看到每点击16- 60%的成本收益, 并通过42- 137%的速率改进点击。 与此同时, 运动的交付是竞争性的。

0
下载
关闭预览

相关内容

【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
44+阅读 · 2020年10月31日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月1日
Arxiv
0+阅读 · 2021年9月30日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关VIP内容
【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
44+阅读 · 2020年10月31日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员