Vision-Language Pre-training (VLP) models have achieved state-of-the-art performance in numerous cross-modal tasks. Since they are optimized to capture the statistical properties of intra- and inter-modality, there remains risk to learn social biases presented in the data as well. In this work, we (1) introduce a counterfactual-based bias measurement \emph{CounterBias} to quantify the social bias in VLP models by comparing the [MASK]ed prediction probabilities of factual and counterfactual samples; (2) construct a novel VL-Bias dataset including 24K image-text pairs for measuring gender bias in VLP models, from which we observed that significant gender bias is prevalent in VLP models; and (3) propose a VLP debiasing method \emph{FairVLP} to minimize the difference in the [MASK]ed prediction probabilities between factual and counterfactual image-text pairs for VLP debiasing. Although CounterBias and FairVLP focus on social bias, they are generalizable to serve as tools and provide new insights to probe and regularize more knowledge in VLP models.


翻译:在这项工作中,我们(1) 采用基于反事实的偏见衡量法,通过比较事实和反事实样本的[MASK]预测概率和反事实样本的[MASK]预测概率,量化VLP模型的社会偏见;(2) 建立一个新型VL-Bias数据集,包括24K的图像文本配对,用于测量VLP模型中的性别偏向,我们从这些模型中注意到,在VLP模型中普遍存在严重的性别偏向;(3) 提出VLP分化法,以尽量减少VLP在事实和反事实图像文本的[MASK]预测概率之间的差异;(2) 建立新型VL-Bias数据集,包括用于衡量VLP模型中性别偏向的24K图像文本配对,我们从中发现,在VLP模型中普遍存在严重的性别偏向;(3) 提议一个VLP分化法方法,以尽量减少VLP的预测概率和反事实图像文本对立的概率差异;虽然反对Bias和FairVLP对社会偏见的焦点是新的,但它们作为常规的探索工具,作为新的工具。

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
60+阅读 · 2022年5月5日
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Transformers are Sample Efficient World Models
Arxiv
0+阅读 · 2022年9月1日
Arxiv
19+阅读 · 2021年6月15日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员