CycleGAN was trained on SynthRAD Grand Challenge Dataset using the single-epoch modification (SEM) method proposed in this paper which is referred to as (CycleGAN-single) compared to the usual method of training CycleGAN on around 200 epochs (CycleGAN-multi). Model performance were evaluated qualitatively and quantitatively with quantitative performance metrics like PSNR, SSIM, MAE and MSE. The consideration of both quantitative and qualitative performance when evaluating a model is unique to certain image-to-image translation tasks like medical imaging of patient data as detailed in this paper. Also, this paper shows that good quantitative performance does not always imply good qualitative performance and the converse is also not always True (i.e. good qualitative performance does not always imply good quantitative performance). This paper also proposes a lightweight model called FQGA (Fast Paired Image-to-Image Translation Quarter-Generator Adversary) which has 1/4 the number of parameters compared to CycleGAN (when comparing their Generator Models). FQGA outperforms CycleGAN qualitatively and quantitatively even only after training on 20 epochs. Finally, using SEM method on FQGA allowed it to again outperform CycleGAN both quantitatively and qualitatively. These performance gains even with fewer model parameters and fewer epochs (which will result in time and computational savings) may also be applicable to other image-to-image translation tasks in Machine Learning apart from the Medical image-translation task discussed in this paper between Cone Beam Computed Tomography (CBCT) and Computed Tomography (CT) images.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员